×

Unitary inflaton as decaying dark matter. (English) Zbl 1416.83151

Summary: We consider the inflation model of a singlet scalar field (sigma field) with both quadratic and linear non-minimal couplings where unitarity is ensured up to the Planck scale. We assume that a \( Z_2 \) symmetry for the sigma field is respected by the scalar potential in Jordan frame but it is broken explicitly by the linear non-minimal coupling due to quantum gravity. We discuss the impacts of the linear non-minimal coupling on various dynamics from inflation to low energy, such as a sizable tensor-to-scalar ratio, a novel reheating process with quartic potential dominance, and suppressed physical parameters in the low energy, etc. In particular, the linear non-minimal coupling leads to the linear couplings of the sigma field to the Standard Model through the trace of the energy-momentum tensor in Einstein frame. Thus, regarding the sigma field as a decaying dark matter, we consider the non-thermal production mechanisms for dark matter from the decays of Higgs and inflaton condensate and show the parameter space that is compatible with the correct relic density and cosmological constraints.

MSC:

83F05 Relativistic cosmology
85A40 Astrophysical cosmology
81T10 Model quantum field theories

References:

[1] Planck collaboration, Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys.594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
[2] Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [INSPIRE].
[3] F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett.B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].
[4] C.P. Burgess, H.M. Lee and M. Trott, Power-counting and the Validity of the Classical Approximation During Inflation, JHEP09 (2009) 103 [arXiv:0902.4465] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/103
[5] J.L.F. Barbon and J.R. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev.D 79 (2009) 081302 [arXiv:0903.0355] [INSPIRE].
[6] C.P. Burgess, H.M. Lee and M. Trott, Comment on Higgs Inflation and Naturalness, JHEP07 (2010) 007 [arXiv:1002.2730] [INSPIRE]. · Zbl 1290.81198 · doi:10.1007/JHEP07(2010)007
[7] M.P. Hertzberg, On Inflation with Non-minimal Coupling, JHEP11 (2010) 023 [arXiv:1002.2995] [INSPIRE]. · Zbl 1294.81348 · doi:10.1007/JHEP11(2010)023
[8] F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP01 (2011) 016 [arXiv:1008.5157] [INSPIRE]. · Zbl 1214.83051 · doi:10.1007/JHEP01(2011)016
[9] G.F. Giudice and H.M. Lee, Unitarizing Higgs Inflation, Phys. Lett.B 694 (2011) 294 [arXiv:1010.1417] [INSPIRE].
[10] H.M. Lee, Running inflation with unitary Higgs, Phys. Lett.B 722 (2013) 198 [arXiv:1301.1787] [INSPIRE]. · Zbl 1311.83073
[11] J.L.F. Barbon, J.A. Casas, J. Elias-Miro and J.R. Espinosa, Higgs Inflation as a Mirage, JHEP09 (2015) 027 [arXiv:1501.02231] [INSPIRE]. · doi:10.1007/JHEP09(2015)027
[12] G.F. Giudice and H.M. Lee, Starobinsky-like inflation from induced gravity, Phys. Lett.B 733 (2014) 58 [arXiv:1402.2129] [INSPIRE]. · Zbl 1370.83117
[13] Y. Ema, Higgs Scalaron Mixed Inflation, Phys. Lett.B 770 (2017) 403 [arXiv:1701.07665] [INSPIRE]. · Zbl 1403.83059
[14] D. Gorbunov and A. Tokareva, Scalaron the healer: removing the strong-coupling in the Higgs- and Higgs-dilaton inflations, Phys. Lett.B 788 (2019) 37 [arXiv:1807.02392] [INSPIRE]. · Zbl 1405.83079
[15] M. He, R. Jinno, K. Kamada, S.C. Park, A.A. Starobinsky and J. Yokoyama, On the violent preheating in the mixed Higgs-R2inflationary model, Phys. Lett.B 791 (2019) 36 [arXiv:1812.10099] [INSPIRE]. · Zbl 1411.83153
[16] H.M. Lee, Light inflaton completing Higgs inflation, Phys. Rev.D 98 (2018) 015020 [arXiv:1802.06174] [INSPIRE].
[17] R. Daido, F. Takahashi and W. Yin, The ALP miracle: unified inflaton and dark matter, JCAP05 (2017) 044 [arXiv:1702.03284] [INSPIRE]. · doi:10.1088/1475-7516/2017/05/044
[18] R. Daido, F. Takahashi and W. Yin, The ALP miracle revisited, JHEP02 (2018) 104 [arXiv:1710.11107] [INSPIRE]. · doi:10.1007/JHEP02(2018)104
[19] O. Lebedev, On Stability of the Electroweak Vacuum and the Higgs Portal, Eur. Phys. J.C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].
[20] J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect, JHEP06 (2012) 031 [arXiv:1203.0237] [INSPIRE]. · doi:10.1007/JHEP06(2012)031
[21] O. Lebedev and H.M. Lee, Higgs Portal Inflation, Eur. Phys. J.C 71 (2011) 1821 [arXiv:1105.2284] [INSPIRE].
[22] J.-O. Gong, H.M. Lee and S.K. Kang, Inflation and dark matter in two Higgs doublet models, JHEP04 (2012) 128 [arXiv:1202.0288] [INSPIRE]. · doi:10.1007/JHEP04(2012)128
[23] P.G. Ferreira, C.T. Hill and G.G. Ross, Inertial Spontaneous Symmetry Breaking and Quantum Scale Invariance, Phys. Rev.D 98 (2018) 116012 [arXiv:1801.07676] [INSPIRE].
[24] P.G. Ferreira, C.T. Hill and G.G. Ross, Weyl Current, Scale-Invariant Inflation and Planck Scale Generation, Phys. Rev.D 95 (2017) 043507 [arXiv:1610.09243] [INSPIRE].
[25] D.M. Ghilencea and H.M. Lee, Weyl gauge symmetry and its spontaneous breaking in Standard Model and inflation, arXiv:1809.09174 [INSPIRE].
[26] F. Bezrukov, G.K. Karananas, J. Rubio and M. Shaposhnikov, Higgs-Dilaton Cosmology: an effective field theory approach, Phys. Rev.D 87 (2013) 096001 [arXiv:1212.4148] [INSPIRE].
[27] F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the Hot Big Bang, JCAP06 (2009) 029 [arXiv:0812.3622] [INSPIRE]. · doi:10.1088/1475-7516/2009/06/029
[28] J. García-Bellido, D.G. Figueroa and J. Rubio, Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity, Phys. Rev.D 79 (2009) 063531 [arXiv:0812.4624] [INSPIRE].
[29] L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev.D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
[30] P.B. Greene, L. Kofman, A.D. Linde and A.A. Starobinsky, Structure of resonance in preheating after inflation, Phys. Rev.D 56 (1997) 6175 [hep-ph/9705347] [INSPIRE].
[31] B.A. Bassett, S. Tsujikawa and D. Wands, Inflation dynamics and reheating, Rev. Mod. Phys.78 (2006) 537 [astro-ph/0507632] [INSPIRE].
[32] J.P.B. Almeida, N. Bernal, J. Rubio and T. Tenkanen, Hidden Inflaton Dark Matter, JCAP03 (2019) 012 [arXiv:1811.09640] [INSPIRE]. · Zbl 1541.83115 · doi:10.1088/1475-7516/2019/03/012
[33] T. Tenkanen, Feebly Interacting Dark Matter Particle as the Inflaton, JHEP09 (2016) 049 [arXiv:1607.01379] [INSPIRE]. · doi:10.1007/JHEP09(2016)049
[34] K. Kainulainen, S. Nurmi, T. Tenkanen, K. Tuominen and V. Vaskonen, Isocurvature Constraints on Portal Couplings, JCAP06 (2016) 022 [arXiv:1601.07733] [INSPIRE]. · doi:10.1088/1475-7516/2016/06/022
[35] F. Bezrukov and D. Gorbunov, Light inflaton Hunter’s Guide, JHEP05 (2010) 010 [arXiv:0912.0390] [INSPIRE]. · Zbl 1288.83040
[36] B.M. Dillon, C. Han, H.M. Lee and M. Park, KK graviton resonance and cascade decays in warped gravity, Int. J. Mod. Phys.A 32 (2017) 1745006 [arXiv:1606.07171] [INSPIRE].
[37] L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP03 (2010) 080 [arXiv:0911.1120] [INSPIRE]. · Zbl 1271.83088 · doi:10.1007/JHEP03(2010)080
[38] N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys.A 32 (2017) 1730023 [arXiv:1706.07442] [INSPIRE].
[39] S. Nurmi, T. Tenkanen and K. Tuominen, Inflationary Imprints on Dark Matter, JCAP11 (2015) 001 [arXiv:1506.04048] [INSPIRE]. · doi:10.1088/1475-7516/2015/11/001
[40] T. Tenkanen, K. Tuominen and V. Vaskonen, A Strong Electroweak Phase Transition from the Inflaton Field, JCAP09 (2016) 037 [arXiv:1606.06063] [INSPIRE]. · doi:10.1088/1475-7516/2016/09/037
[41] O. Catà, A. Ibarra and S. Ingenhütt, Dark matter decays from nonminimal coupling to gravity, Phys. Rev. Lett.117 (2016) 021302 [arXiv:1603.03696] [INSPIRE].
[42] O. Catà, A. Ibarra and S. Ingenhütt, Dark matter decay through gravity portals, Phys. Rev.D 95 (2017) 035011 [arXiv:1611.00725] [INSPIRE].
[43] O. Catà, A. Ibarra and S. Ingenhütt, Sharp spectral features from light dark matter decay via gravity portals, JCAP11 (2017) 044 [arXiv:1707.08480] [INSPIRE]. · doi:10.1088/1475-7516/2017/11/044
[44] S.-M. Choi, Y.-J. Kang and H.M. Lee, Diphoton resonance confronts dark matter, JHEP07 (2016) 030 [arXiv:1605.04804] [INSPIRE]. · doi:10.1007/JHEP07(2016)030
[45] K.-m. Cheung, Phenomenology of radion in Randall-Sundrum scenario, Phys. Rev.D 63 (2001) 056007 [hep-ph/0009232] [INSPIRE].
[46] S. Bae, P. Ko, H.S. Lee and J. Lee, Radion phenomenology in the Randall-Sundrum scenario, in COSMO-2000. Particle physics and the early universe. Proceedings, 4th International Workshop, COSMO 2000, Cheju Korea (2000), pg. 243 [hep-ph/0103187] [INSPIRE].
[47] G. Raffelt and D. Seckel, Bounds on Exotic Particle Interactions from SN 1987a, Phys. Rev. Lett.60 (1988) 1793 [INSPIRE]. · doi:10.1103/PhysRevLett.60.1793
[48] G.G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys.741 (2008) 51 [hep-ph/0611350] [INSPIRE].
[49] J.A. Grifols, E. Masso and S. Peris, Energy Loss From the Sun and RED Giants: Bounds on Short Range Baryonic and Leptonic Forces, Mod. Phys. Lett.A 4 (1989) 311 [INSPIRE].
[50] E.G. Adelberger, B.R. Heckel and A.E. Nelson, Tests of the gravitational inverse square law, Ann. Rev. Nucl. Part. Sci.53 (2003) 77 [hep-ph/0307284] [INSPIRE].
[51] H. An, M. Pospelov, J. Pradler and A. Ritz, Direct Detection Constraints on Dark Photon Dark Matter, Phys. Lett.B 747 (2015) 331 [arXiv:1412.8378] [INSPIRE].
[52] Y. Hochberg, T. Lin and K.M. Zurek, Detecting Ultralight Bosonic Dark Matter via Absorption in Superconductors, Phys. Rev.D 94 (2016) 015019 [arXiv:1604.06800] [INSPIRE].
[53] Y. Hochberg, T. Lin and K.M. Zurek, Absorption of light dark matter in semiconductors, Phys. Rev.D 95 (2017) 023013 [arXiv:1608.01994] [INSPIRE].
[54] I.M. Bloch, R. Essig, K. Tobioka, T. Volansky and T.-T. Yu, Searching for Dark Absorption with Direct Detection Experiments, JHEP06 (2017) 087 [arXiv:1608.02123] [INSPIRE]. · doi:10.1007/JHEP06(2017)087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.