×

Explanation for why the early universe was stable and dominated by the standard model. (English) Zbl 1484.83126

Summary: The Standard Model (SM) possesses an instability at high scales that would be catastrophic during or just after inflation, and yet no new physics has been seen to alter this. Furthermore, modern developments in quantum gravity suggest that the SM degrees of freedom are not unique; that a typical low energy effective theory should include a large assortment of hidden sector degrees of freedom. It is therefore puzzling that cosmological constraints from BBN and CMB reveal that the early universe was almost entirely dominated by the SM, when the inflaton \(\phi\) could have decayed into many sectors. In this work we propose the following explanation for all of this: we allow the lowest dimension operators with natural coefficients between the inflaton and both the Higgs and hidden sectors. Such hidden sectors are assumed to be entirely natural; this means all unprotected masses are pushed up to high scales and project out of the spectrum, while only massless (or protected) degrees of freedom remain, and so the inflaton can only reheat these sectors through higher dimension (and suppressed) operators. On the other hand, the SM possesses a special feature: it includes a light Higgs \(H\), presumably for life to exist, and hence it allows a super-renormalizable coupling to the inflaton \(\phi H^\dagger H\), which allows rapid decay into the SM. We show that this naturally (i) removes the instability in the Higgs potential both during and after inflation due to a tree-level effect that increases the value of the Higgs self-coupling from the IR to the UV when one passes the inflaton mass, (ii) explains why the SM is dominant in the early universe, and in particular we compute the relative temperature and abundances of the sectors, (iii) allows dark matter to form in hidden sector/s through subsequent strong dynamics (or axions, etc), (iv) allows for high reheating and possibly baryogenesis, and (v) accounts for why there so far has been no direct detection of dark matter or new physics beyond the SM.

MSC:

83F05 Relativistic cosmology
81V35 Nuclear physics
83C45 Quantization of the gravitational field
81V22 Unified quantum theories
81T17 Renormalization group methods applied to problems in quantum field theory
80A10 Classical and relativistic thermodynamics

References:

[1] J. Giedt, 2001 Completion of standard model like embeddings, https://doi.org/10.1006/aphy.2001.6139 Annals Phys.289251 [hep-th/0009104] · Zbl 1021.81054 · doi:10.1006/aphy.2001.6139
[2] W. Taylor and Y.-N. Wang, 2016 A Monte Carlo exploration of threefold base geometries for 4 d F-theory vacua J. High Energy Phys. JHEP01(2016)137 [1510.04978] · Zbl 1388.81013 · doi:10.1007/JHEP01(2016)137
[3] G. Degrassi et al., 2012 Higgs mass and vacuum stability in the Standard Model at NNLO J. High Energy Phys. JHEP08(2012)098 [1205.6497] · doi:10.1007/JHEP08(2012)098
[4] G. Isidori, G. Ridolfi and A. Strumia, 2001 On the metastability of the standard model vacuum, https://doi.org/10.1016/S0550-3213(01)00302-9 Nucl. Phys. B609 387 [hep-ph/0104016] · Zbl 0971.81580 · doi:10.1016/S0550-3213(01)00302-9
[5] J. Ellis, J.R. Espinosa, G.F. Giudice, A. Hoecker and A. Riotto, 2009 The probable fate of the standard model, https://doi.org/10.1016/j.physletb.2009.07.054 Phys. Lett. B679 369 [0906.0954] · doi:10.1016/j.physletb.2009.07.054
[6] J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, 2012 Higgs mass implications on the stability of the electroweak vacuum, https://doi.org/10.1016/j.physletb.2012.02.013 Phys. Lett. B709 222 [1112.3022] · doi:10.1016/j.physletb.2012.02.013
[7] J.R. Espinosa et al., 2015 The cosmological Higgstory of the vacuum instability J. High Energy Phys. JHEP09(2015)174 [1505.04825] · Zbl 1388.83910 · doi:10.1007/JHEP09(2015)174
[8] J. Kearney, H. Yoo and K.M. Zurek, 2015 Is a Higgs vacuum instability fatal for high-scale inflation?, https://doi.org/10.1103/PhysRevD.91.123537 Phys. Rev. D91 123537 [1503.05193] · doi:10.1103/PhysRevD.91.123537
[9] W.E. East, J. Kearney, B. Shakya, H. Yoo and K.M. Zurek, 2017 Spacetime dynamics of a Higgs vacuum instability during inflation, https://doi.org/10.1103/PhysRevD.95.023526 Phys. Rev. D95 023526 [1607.00381] · doi:10.1103/PhysRevD.95.023526
[10] M. Jain and M.P. Hertzberg, 2020 Eternal inflation and reheating in the presence of the standard model Higgs field, https://doi.org/10.1103/PhysRevD.101.103506 Phys. Rev. D101 103506 [1910.04664] · doi:10.1103/PhysRevD.101.103506
[11] M. Jain and M.P. Hertzberg, 2019 Statistics of inflating regions in eternal inflation, https://doi.org/10.1103/PhysRevD.100.023513 Phys. Rev. D100 023513 [1904.04262] · doi:10.1103/PhysRevD.100.023513
[12] M.P. Hertzberg and M. Jain, 2019 Counting of states in Higgs theories, https://doi.org/10.1103/PhysRevD.99.065015 Phys. Rev. D99 065015 [1807.05233] · doi:10.1103/PhysRevD.99.065015
[13] M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, 2015 Spacetime curvature and Higgs stability after inflation, https://doi.org/10.1103/PhysRevLett.115.241301 Phys. Rev. Lett.115 241301 [1506.04065] · doi:10.1103/PhysRevLett.115.241301
[14] Y. Ema, K. Mukaida and K. Nakayama, 2016 Fate of electroweak vacuum during preheating J. Cosmol. Astropart. Phys.2016 10 043 [1602.00483]
[15] K. Enqvist, M. Karciauskas, O. Lebedev, S. Rusak and M. Zatta, 2016 Postinflationary vacuum instability and Higgs-inflaton couplings J. Cosmol. Astropart. Phys.2016 11 025 [1608.08848]
[16] K. Kohri and H. Matsui, 2016 Higgs vacuum metastability in primordial inflation, preheating, and reheating, https://doi.org/10.1103/PhysRevD.94.103509 Phys. Rev. D94 103509 [1602.02100] · doi:10.1103/PhysRevD.94.103509
[17] K. Kohri and H. Matsui, 2017 Electroweak vacuum instability and renormalized Higgs field vacuum fluctuations in the inflationary universe J. Cosmol. Astropart. Phys.2017 08 011 [1607.08133] · Zbl 1515.83380
[18] C. Gross, O. Lebedev and M. Zatta, 2016 Higgs-inflaton coupling from reheating and the metastable Universe, https://doi.org/10.1016/j.physletb.2015.12.014 Phys. Lett. B753 178 [1506.05106] · doi:10.1016/j.physletb.2015.12.014
[19] D.G. Figueroa, J. García-Bellido and F. Torrenti, 2015 Decay of the standard model Higgs field after inflation, https://doi.org/10.1103/PhysRevD.92.083511 Phys. Rev. D92 083511 [1504.04600] · doi:10.1103/PhysRevD.92.083511
[20] A. Joti et al., 2017 (Higgs) vacuum decay during inflation J. High Energy Phys. JHEP07(2017)058 [1706.00792] · Zbl 1380.83210 · doi:10.1007/JHEP07(2017)058
[21] Y. Ema, K. Mukaida and K. Nakayama, 2016 Electroweak vacuum stabilized by moduli during/after inflation, https://doi.org/10.1016/j.physletb.2016.08.046 Phys. Lett. B761 419 [1605.07342] · doi:10.1016/j.physletb.2016.08.046
[22] T. Markkanen, A. Rajantie and S. Stopyra, 2018 Cosmological aspects of Higgs vacuum metastability, https://doi.org/10.3389/fspas.2018.00040 Front. Astron. Space Sci.5 40 [1809.06923] · doi:10.3389/fspas.2018.00040
[23] A.K. Saha and A. Sil, 2017 Higgs vacuum stability and modified chaotic inflation, https://doi.org/10.1016/j.physletb.2016.12.031 Phys. Lett. B765 244 [1608.04919] · doi:10.1016/j.physletb.2016.12.031
[24] Y. Ema, K. Mukaida and K. Nakayama, 2017 Electroweak vacuum metastability and low-scale inflation J. Cosmol. Astropart. Phys.2017 12 030 [1706.08920]
[25] J.-O. Gong and N. Kitajima, 2017 Cosmological stochastic Higgs field stabilization, https://doi.org/10.1103/PhysRevD.96.063521 Phys. Rev. D96 063521 [1705.11178] · doi:10.1103/PhysRevD.96.063521
[26] V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, 1998 Viable range of the mass scale of the standard model, https://doi.org/10.1103/PhysRevD.57.5480 Phys. Rev. D57 5480 [hep-ph/9707380] · doi:10.1103/PhysRevD.57.5480
[27] L.J. Hall, D. Pinner and J.T. Ruderman, 2014 The weak scale from BBN J. High Energy Phys. JHEP12(2014)134 [1409.0551] · doi:10.1007/JHEP12(2014)134
[28] M.P. Hertzberg and M. Sandora, 2019 Dark matter and naturalness J. High Energy Phys. JHEP12(2019)037 [1908.09841] · doi:10.1007/JHEP12(2019)037
[29] J.R.C. Cuissa and D.G. Figueroa, 2019 Lattice formulation of axion inflation. Application to preheating J. Cosmol. Astropart. Phys.2019 06 002 [1812.03132] · Zbl 1481.83099
[30] C.P. Burgess, 2007 Introduction to effective field theory, https://doi.org/10.1146/annurev.nucl.56.080805.140508 Ann. Rev. Nucl. Part. Sci.57 329 [hep-th/0701053] · doi:10.1146/annurev.nucl.56.080805.140508
[31] J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, 2012 Stabilization of the electroweak vacuum by a scalar threshold effect J. High Energy Phys. JHEP06(2012)031 [1203.0237] · doi:10.1007/JHEP06(2012)031
[32] M.P. Hertzberg, 2017 A correlation between the higgs mass and dark matter, https://doi.org/10.1155/2017/6295927 Adv. High Energy Phys.2017 6295927 [1210.3624] · doi:10.1155/2017/6295927
[33] D. Gorbunov and A. Tokareva, 2019 Scalaron the healer: removing the strong-coupling in the Higgs- and Higgs-dilaton inflations, https://doi.org/10.1016/j.physletb.2018.11.015 Phys. Lett. B788 37 [1807.02392] · Zbl 1405.83079 · doi:10.1016/j.physletb.2018.11.015
[34] M.E. Krauss and F. Staub, 2018 Perturbativity constraints in BSM models, https://doi.org/10.1140/epjc/s10052-018-5676-5 Eur. Phys. J. C78 185 [1709.03501] · doi:10.1140/epjc/s10052-018-5676-5
[35] Particle Data Group collaboration, 2018 Review of particle physics, https://doi.org/10.1103/PhysRevD.98.030001 Phys. Rev. D98 030001 · doi:10.1103/PhysRevD.98.030001
[36] M. Butenschoen, B. Dehnadi, A.H. Hoang, V. Mateu, M. Preisser and I.W. Stewart, 2016 Top quark mass calibration for Monte Carlo event generators, https://doi.org/10.1103/PhysRevLett.117.232001 Phys. Rev. Lett.117 232001 [1608.01318] · doi:10.1103/PhysRevLett.117.232001
[37] S.R. Coleman and E.J. Weinberg, 1973 Radiative corrections as the origin of spontaneous symmetry breaking, https://doi.org/10.1103/PhysRevD.7.1888 Phys. Rev. D7 1888 · doi:10.1103/PhysRevD.7.1888
[38] L. Kofman, A.D. Linde and A.A. Starobinsky, 1997 Towards the theory of reheating after inflation, https://doi.org/10.1103/PhysRevD.56.3258 Phys. Rev. D56 3258 [hep-ph/9704452] · doi:10.1103/PhysRevD.56.3258
[39] K.K. Boddy, J.L. Feng, M. Kaplinghat and T.M.P. Tait, 2014 Self-interacting dark matter from a non-Abelian hidden sector, https://doi.org/10.1103/PhysRevD.89.115017 Phys. Rev. D89 115017 [1402.3629] · doi:10.1103/PhysRevD.89.115017
[40] N. Yamanaka, H. Iida, A. Nakamura and M. Wakayama, Dark matter scattering cross section in Yang-Mills theory, [1910.01440] · Zbl 1476.83068
[41] N. Yamanaka, H. Iida, A. Nakamura and M. Wakayama, 2020 Glueball scattering cross section in lattice SU(2) Yang-Mills theory, https://doi.org/10.1103/PhysRevD.102.054507 Phys. Rev. D102 054507 [1910.07756] · doi:10.1103/PhysRevD.102.054507
[42] Planck collaboration, 2020 Planck 2018 results. VI. Cosmological parameters, https://doi.org/10.1051/0004-6361/201833910 Astron. Astrophys.641 A6 [1807.06209] · doi:10.1051/0004-6361/201833910
[43] Of Particular Significance — Conversations About Science with Theoretical Physicist Matt Strassler, https://profmattstrassler.com/tag/naturalness
[44] N. Arkani-Hamed, T. Cohen, R.T. D’Agnolo, A. Hook, H.D. Kim and D. Pinner, 2016 Solving the hierarchy problem at reheating with a large number of degrees of freedom, https://doi.org/10.1103/PhysRevLett.117.251801 Phys. Rev. Lett.117 251801 [1607.06821] · doi:10.1103/PhysRevLett.117.251801
[45] F. Takahashi and M. Yamada, 2019 Anthropic bound on dark radiation and its implications for reheating J. Cosmol. Astropart. Phys.2019 07 001 [1904.12864] · Zbl 1515.83453
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.