×

Discreteness of hyperbolic isometries by test maps. (English) Zbl 1542.20239

Summary: Let \(\mathbb{F}=\mathbb{R},\mathbb{C}\) or the Hamilton’s quaternions \(\mathbb{H}\). Let \(\mathbf{H}_{\mathbb{F}}^n\) denote the \(n\)-dimensional \(\mathbb {F}\)-hyperbolic space. Let \(\mathrm{U}(n,1; \mathbb{F})\) be the linear group that acts by the isometries of \(\mathbf{H}_{\mathbb{F}}^n\). A subgroup \(G\) of \(\mathrm{U}(n,1;\mathbb{F})\) is called Zariski dense if it does not fix a point on \(\mathbf{H}_{\mathbb{F}}^n\cup\partial\mathbf{H}_{\mathbb{F}}^n\) and neither it preserves a totally geodesic subspace of \(\mathbf{H}_{\mathbb{F}}^n\). We prove that a Zariski dense subgroup \(G\) of \(\mathrm{U}(n,1;\mathbb{F})\) is discrete if for every loxodromic element \(g\in G\), the two generator subgroup \(\langle f,g\rangle\) is discrete, where \(f \in\mathrm{U}(n,1;\mathbb{F})\) is a test map not necessarily from \(G\).

MSC:

20H10 Fuchsian groups and their generalizations (group-theoretic aspects)
20H25 Other matrix groups over rings
51M10 Hyperbolic and elliptic geometries (general) and generalizations
15A66 Clifford algebras, spinors

References:

[1] W. Abikoff and A. Haas: Nondiscrete groups of hyperbolic motions, Bull. London Math. Soc. 22 (1990), 233-238. · Zbl 0709.20026
[2] L.V. Ahlfors: Clifford numbers and Möbius transformations in \({\bf R}^n\); in Clifford algebras and their applications in mathematical physics (Canterbury, 1985), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci 183, Reidel, Dordrecht, 1986, 167-175. · Zbl 0598.15025
[3] L.V. Ahlfors: Möbius transformations and Clifford numbers; in Differential geometry and complex analysis, Springer, Berlin, 1985, 65-73. · Zbl 0569.30040
[4] W.S. Cao and H. Tan: Jørgensen’s inequality for quaternionic hyperbolic space with elliptic elements, Bull. Aust. Math. Soc. 81 (2010), 121-131. · Zbl 1184.30045
[5] W.S. Cao and J.R. Parker: Jørgensen’s inequality and collars in \(n\)-dimensional quaternionic hyperbolic space, Q. J. Math. 62 (2013), 523-543. · Zbl 1244.20045
[6] C. Cao and P.L. Waterman: Conjugacy invariants of Möbius groups; in Quasiconformal mappings and analysis (Ann Arbor, MI, 1995), Springer, New York, 1998, 109-139. · Zbl 0894.30027
[7] W.S. Cao: Discreteness criterion in {\({\rm SL}(2,\Bbb C)\)} by a test map, Osaka J. Math. 49 (2012), 901-907. · Zbl 1294.30035
[8] S.S. Chen and L. Greenberg: Hyperbolic spaces; in Contributions to analysis, Academic Press, New York, 1974, 49-87. · Zbl 0295.53023
[9] M. Chen: Discreteness and convergence of Möbius groups, Geom. Dedicata 104 (2004), 61-69. · Zbl 1053.30038
[10] A. Fang and B. Nai: On the discreteness and convergence in \(n\)-dimensional Möbius groups, J. London Math. Soc. (2) 61 (2000), 761-773. · Zbl 0959.30027
[11] S. Friedland and S. Hersonsky: Jorgensen’s inequality for discrete groups in normed algebras, Duke Math. J. 69 (1993), 593-614. · Zbl 0799.30033
[12] K. Gongopadhyay and R.S. Kulkarni: \(z\)-classes of isometries of the hyperbolic space, Conform. Geom. Dyn. 13 (2009), 91-109. · Zbl 1206.51017
[13] K. Gongopadhyay, A. Mukherjee, and S.K. Sardar: Test maps and discreteness in \({\rm SL}(2,\Bbb{H})\), Glasg. Math. J. 61 (2019), 523-533. · Zbl 1468.20091
[14] K. Gongopadhyay and A. Mukherjee: Extremality of quaternionic Jørgensen inequality, Hiroshima Math. J. 47 (2017), 113-137. · Zbl 1476.20051
[15] K. Gongopadhyay, M.M. Mishra, and D. Tiwari: On discreteness of subgroups of quaternionic hyperbolic isometries, Bull. Aust. Math. Soc. 101 (2020), 283-293. · Zbl 1481.20185
[16] S. Hersonsky and F. Paulin: On the volumes of complex hyperbolic manifolds, Duke Math. J. 84 (1996), 719-737. · Zbl 0866.53036
[17] Y. Jiang, H. Wang, and B. Xie: Discreteness of subgroups of \(PU(1,n;\mathbb{C})\), Proc. Japan Acad., Ser. A, 84 (2008), 78-80. · Zbl 1167.30024
[18] R. Kellerhals: Quaternions and some global properties of hyperbolic 5-manifolds, Canad. J. Math. 55 (2003), 1080-1099. · Zbl 1054.57019
[19] L.L. Li and X.T. Wang: Discreteness criteria for Möbius groups acting on \(\overline{\Bbb R}{}^n\). II, Bull. Aust. Math. Soc. 80 (2009), 275-290. · Zbl 1187.30040
[20] G.J. Martin: On discrete Möbius groups in all dimensions: A generalization of Jørgensen’s inequality, Acta Math. 163 (1989), 253-289. · Zbl 0698.20037
[21] H. Qin and Y. Jiang: Discreteness criteria based on a test map in \(PU(n,1)\), Proc. Indian Acad. Sci. Math. Sci. 122 (2012), 519-524. · Zbl 1270.30012
[22] J.G. Ratcliffe: Foundations of hyperbolic manifolds, second edition, Graduate Texts in Mathematics 149, Springer, New York, 2006. · Zbl 1106.51009
[23] X. Wang, L.L. Li, and W.S. Cao: Discreteness criteria for Möbius groups acting on \(\overline{\Bbb R^n} \),. Israel J. Math. 150 (2005), 357-368. · Zbl 1330.30042
[24] P.L. Waterman: Möbius transformations in several dimensions, Adv. Math. 101 (1993), 87-113. · Zbl 0793.15019
[25] S. Yang and T. Zhao: Test maps and discrete groups in \(SL(2,\Bbb{C})\) {II}. Glasg. Math. J. 56 (2014), 53-56. · Zbl 1302.30054
[26] S. Yang: Test maps and discrete groups in \({\rm SL}(2,\Bbb{C})\), Osaka J. Math. 46 (2009), 403-409. · Zbl 1178.30024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.