×

Axisymmetric elasticity solutions for a uniformly loaded annular plate of transversely isotropic functionally graded materials. (English) Zbl 1142.74024

Summary: We consider the axisymmetric problem of a functionally graded transversely isotropic annular plate subject to a uniform transverse load. A direct displacement method is developed in which non-zero displacement components are expressed in terms of suitable combinations of power and logarithmic functions of \(r\), the radial coordinate, with coefficients being undetermined functions of \(z\), the axial coordinate. The governing equations as well as the corresponding boundary conditions for the undetermined functions are deduced from equilibrium equations and boundary conditions for the annular plate, respectively. Through a step-by-step integration scheme along with the consideration of boundary conditions at the upper and lower surfaces, the \(z\)-dependent functions are determined in explicit form, and certain integral constants are then determined completely from the remaining boundary conditions. Thus, analytical elasticity solutions for the plate with different cylindrical boundary conditions are presented. As a promising feature, the developed method is applicable when the five material constants of a transversely isotropic material vary along the thickness arbitrarily and independently. A numerical example is finally given to show the effect of material inhomogeneity on the elastic field in the annular plate.

MSC:

74K20 Plates
74E10 Anisotropy in solid mechanics
74E05 Inhomogeneity in solid mechanics
74G05 Explicit solutions of equilibrium problems in solid mechanics
Full Text: DOI

References:

[1] Yamanouchi, M., Koizumi, M., Hirai, T., Shiota, I. (eds.): Proc. 1st Int Symp. on Functionally Graded Materials, Japan 1990.
[2] Koizumi M. (1993). Concept of FGM. Ceramic Trans. 34: 3–10
[3] Koizumi M. (1997). FGM activity in Japan. Compos. Part B. 28: 1–4 · doi:10.1016/S1359-8368(96)00016-9
[4] Watari F., Yokoyama A., Saso F. and Kawasaki T. (1997). Fabrication and properties of functionally graded dental implant. Compos. Part B 28: 5–11 · doi:10.1016/S1359-8368(96)00021-2
[5] Pompe W., Worch H., Epple M., Friess W., Gelinsky M., Greil P., Hempel U., Scharnweber D. and Schulte K. (2003). Functionally graded materials for biomedical application. Mater. Sci. Engng. A362: 40–60 · doi:10.1016/S0921-5093(03)00580-X
[6] Müller E., Drašar Č., Schilz J. and Kaysser W. A. (2003). Functionally graded materials for sensor and energy application. Mater. Sci. Engng. A 362: 17–39 · doi:10.1016/S0921-5093(03)00581-1
[7] Schulz U., Peters M., Bach F. W. and Tegeder G. (2003). Graded coatings for thermal, wear and corrosion barriers. Mater. Sci. Engng. A 362: 61–80 · doi:10.1016/S0921-5093(03)00579-3
[8] Suresh S. and Mortensen A. (1998). Fundamentals of functionally graded materials. Maney, London
[9] Chen W. Q. and Ding H. J. (2002). On free vibration of a functionally graded piezoelectric rectangular plate. Acta. Mech. 153: 207–216 · Zbl 1008.74038 · doi:10.1007/BF01177452
[10] Vel S. S. and Batra R. C. (2003). Three-dimensional analysis of transient thermal stress in functionally graded plates. Int. J. Solids Struct. 40: 7181–7196 · Zbl 1076.74037 · doi:10.1016/S0020-7683(03)00361-5
[11] Kitipornchai S., Yang J. and Liew K. M. (2006). Random vibration of the functionally graded laminates in thermal environments. Comput. Meth. Appl. Mech. Engng. 195: 1075–1095 · Zbl 1115.74031 · doi:10.1016/j.cma.2005.01.016
[12] Prakash T. and Ganapathi M. (2006). Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method. Compos. Part B 37: 642–649 · doi:10.1016/j.compositesb.2006.03.005
[13] Abrate S. (2006). Free vibration, buckling and static deflections of functionally graded plates. Compos Sci. Technol. 66: 2383–2394 · doi:10.1016/j.compscitech.2006.02.032
[14] Yang J., Liew K. M. and Kitipornchai S. (2005). Second-order statistics of the elastic buckling of functionally graded rectangular plates. Compos. Sci. Technol. 65: 1165–1175 · doi:10.1016/j.compscitech.2004.11.012
[15] Aydogdu, M.: Conditions for functionally graded plates to remain flat under in-plane loads by classical plate theory. Compos. Struct. (2006) (in press) DOI: 10.1016/j.compstruct.2006.10.004
[16] Chen W. Q., Wang H. M. and Bao R. H. (2007). On calculating dispersion curves of waves in a functionally elastic plate. Compos. Struct. 81: 233–242 · doi:10.1016/j.compstruct.2006.08.009
[17] Carpinteri A. and Pugno N. (2006). Cracks and re-entrant corners in functionally graded materials. Engng. Fract. Mech. 73: 1279–1291 · doi:10.1016/j.engfracmech.2006.01.008
[18] Wang B. L., Han J. C. and Du S. Y. (2000). Cracks problem for non-homogeneous composite material subjected to dynamic loading. Int. J. Solids Struct. 37: 1251–1274 · Zbl 0970.74066 · doi:10.1016/S0020-7683(98)00292-3
[19] Prakash T. and Ganapathi M. (2006). Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method. Compos. Part B. 37: 642–649 · doi:10.1016/j.compositesb.2006.03.005
[20] Chi S. H. and Chung Y. L. (2006). Mechanical behavior of functionally graded material plates under transverse load – Part I: Analysis. Int. J. Solids Struct. 43: 3657–3674 · Zbl 1121.74396 · doi:10.1016/j.ijsolstr.2005.04.011
[21] Chi S. H. and Chung Y. L. (2006). Mechanical behavior of functionally graded material plates under transverse load – Part II: Numerical results. Int. J. Solids Struct. 43: 3675–3691 · Zbl 1121.74397 · doi:10.1016/j.ijsolstr.2005.04.010
[22] Reddy J. N., Wang C. M. and Kitipornchai S. (1999). Axisymmetric bending of functionally graded circular and annular plates. Euro. J. Mech. A/Solids 18: 185–199 · Zbl 0942.74044 · doi:10.1016/S0997-7538(99)80011-4
[23] Reddy J. N. (2000). Analysis of functionally graded plates. Int. J. Numer. Engng. 47: 663–684 · Zbl 0970.74041 · doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
[24] Ma L. S. and Wang T. J. (2004). Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory. Int. J. Solids Struct. 41: 85–101 · Zbl 1076.74036 · doi:10.1016/j.ijsolstr.2003.09.008
[25] Aboudi J., Pindera M. J. and Arnold S. M. (1995). A coupled higher-order theory for functionally graded composites with partial homogenization. Compos. Engng. 5: 771–792 · doi:10.1016/0961-9526(95)00032-I
[26] Aboudi J., Pindera M. J. and Arnold S. M. (1999). Higher-order theory for functionally graded materials. Compos. Part B. 30(8): 777–832 · doi:10.1016/S1359-8368(99)00053-0
[27] Wu Z. and Chen W. J. (2006). A higher-order theory and refined three-node triangular element for functionally graded plates. Euro. J. Mech. A/Solids 25: 447–463 · Zbl 1087.74024 · doi:10.1016/j.euromechsol.2005.11.008
[28] Qian L. F. and Batra R. C. (2004). Transient thermoelastic deformations of a thick functionally graded plate. J. Thermal Stresses 27: 705–740 · doi:10.1080/01495730490440145
[29] Qian L. F., Batra R. C. and Chen L. M. (2004). Static and dynamic deformations of a thick functionally graded elastic plate by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method. Compos. Part B 35: 85–697 · doi:10.1016/j.compositesb.2004.02.004
[30] Gilhooley, D. F., Batra, R. C., Xiao, J. R., McCarthy, M. A., Gillespie, J. W. Jr: Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions. Compos. Struct. (in press) DOI: 10.1016/j.compstruct 2006.07.007 · Zbl 1120.74865
[31] Soldatos K. P. (2004). Complex potential formalisms for bending of inhomogeneous monoclinic plates including transverse shear deformation. J. Mech. Phys. Solids 52: 341–357 · Zbl 1106.74372 · doi:10.1016/S0022-5096(03)00102-9
[32] Vel S. S. and Batra R. C. (2002). Exact solution for thermoelastic deformation of functionally graded thick rectangular plates. AIAA J. 40: 1421–1433 · doi:10.2514/2.1805
[33] Mian A. M. and Spencer A. J. M. (1998). Exact solutions for functionally graded and laminated elastic materials. J. Mech. Phys. Solids 42: 2283–2295 · Zbl 1043.74008 · doi:10.1016/S0022-5096(98)00048-9
[34] Kashtalyan M. (2004). Three-dimensional elastic solutions for bending of functionally graded rectangular plates. Euro. J. Mech. A/Solids 23: 853–864 · Zbl 1058.74569 · doi:10.1016/j.euromechsol.2004.04.002
[35] Reddy J. N. and Cheng Z. Q. (2001). Three-dimensional thermomechanical deformations of functionally graded rectangular plates. Euro. J. Mech. A/Solids 20: 841–855 · Zbl 1002.74061 · doi:10.1016/S0997-7538(01)01174-3
[36] Reddy J. N. and Cheng Z. Q. (2001). Three-dimensional solutions of smart functionally graded plates. J. Appl. Mech. 68: 234–241 · Zbl 1110.74647 · doi:10.1115/1.1347994
[37] Cheng Z. G. and Batra R. C. (2000). Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Compos. Part B 31: 97–106 · doi:10.1016/S1359-8368(99)00069-4
[38] Chen W. Q. and Ding H. J. (2000). Bending of functionally graded piezoelectric rectangular plates. Acta Mech. Solida Sinica 13: 312–319
[39] Chen W. Q., Bian Z. G. and Ding H. J. (2003). Three-dimensional analysis of a thick FGM rectangular plate in thermal environment. J. Zhejiang Univ. (SCIENCE) 4: 1–7 · doi:10.1631/jzus.2003.0001
[40] Zhong Z. and Shang E. T. (2003). Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate. Int. J. Solids Struct. 40: 5335–5352 · Zbl 1060.74568 · doi:10.1016/S0020-7683(03)00288-9
[41] Tanigawa Y. (1995). Some basic thermo-elastic problems for non-homogeneous structural material. Appl. Mech. Rev. 48: 287–300 · doi:10.1115/1.3005103
[42] Bian, Z. G.: Coupled problems of functionally graded materials plates and shells. Doctoral dissertation, Zhejiang University, Hangzhou (2005) (in Chinese).
[43] Timoshenko S. P. and Goodier J. N. (1970). Theory of elasticity, 3rd edn. McGraw Hill, New York · Zbl 0266.73008
[44] Timple A. (1924). Achsensymmetrische Deformation von Umdrehungskörpern. Z. Angew. Math. Mech. 4: 361–376 · JFM 50.0545.01 · doi:10.1002/zamm.19240040501
[45] Ding H. J., Chen W. Q. and Zhang L. C. (2006). Elasticity of transversely isotropic materials. Springer, Dordrecht · Zbl 1101.74001
[46] Young W. C. and Budynas R. G. (2002). Roark’s formulas for stress and strain. McGraw-Hill, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.