×

A Selberg trace formula for hypercomplex analytic cusp forms. (English) Zbl 1380.11074

Summary: A breakthrough in developing a theory of hypercomplex analytic modular forms over Clifford algebras has been the proof of the existence of non-trivial cusp forms for important discrete arithmetic subgroups of the Ahlfors-Vahlen group. Hypercomplex analytic modular forms in turn also include Maaß forms associated to particular eigenvalues as special cases. In this paper we establish a Selberg trace formula for this new class of automorphic forms. In particular, we show that the dimension of the space of hypercomplex-analytic cusp forms is finite. Finally, we describe the space of Eisenstein series and give a dimension formula for the complete space of \(k\)-holomorphic Cliffordian modular forms.

MSC:

11F72 Spectral theory; trace formulas (e.g., that of Selberg)
11F03 Modular and automorphic functions
11F55 Other groups and their modular and automorphic forms (several variables)
30G35 Functions of hypercomplex variables and generalized variables
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: DOI

References:

[1] (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Tables with Formulas, Graphs and Mathematical Tables (1965)), 374-379 · Zbl 0171.38503
[2] Ahlfors, L. V., Möbius transformations in \(R^n\) expressed through \(2 \times 2\) matrices of Clifford numbers, Complex Var. Theory Appl., 5, 215-224 (1986) · Zbl 0597.30062
[3] Brackx, F.; Delanghe, R.; Sommen, F., Clifford Analysis, Res. Notes, vol. 76 (1982), Pitman Publ.: Pitman Publ. Boston, London, Melbourne · Zbl 0529.30001
[4] Bringmann, K.; Ono, K., The \(f(q)\) mock theta function conjecture and partitions ranks, Invent. Math., 165, 2, 243-266 (2006) · Zbl 1135.11057
[5] Bulla, E.; Constales, D.; Kraußhar, R. S.; Ryan, J., Dirac type operators for arithmetic subgroups of generalized modular groups, J. Reine Angew. Math., 643, 1-19 (2010) · Zbl 1204.58029
[6] Cohn, P. M., Basic Algebra: Groups, Rings and Fields, 108 (2003), Springer: Springer London · Zbl 1003.00001
[7] Constales, D.; Grob, D.; Kraußhar, R. S., A new class of hypercomplex analytic cusp forms, Trans. Amer. Math. Soc., 365, 2, 811-835 (2013) · Zbl 1291.11081
[8] Constales, D.; Kraußhar, R. S., Hilbert spaces of solutions to polynomial Dirac equations, Fourier transforms and reproducing kernel functions for cylindrical domains, Z. Anal. Anwend., 24, 3, 611-636 (2005) · Zbl 1096.30041
[9] Constales, D.; Kraußhar, R. S.; Ryan, J., \(k\)-hypermonogenic automorphic forms, J. Number Theory, 126, 254-271 (2007) · Zbl 1215.11042
[10] Elstrodt, J.; Grunewald, F.; Mennicke, J., Eisenstein series on three-dimensional hyperbolic space and imaginary quadratic number fields, J. Reine Angew. Math., 360, 160-213 (1985) · Zbl 0555.10012
[11] Elstrodt, J.; Grunewald, F.; Mennicke, J., Vahlen’s group of Clifford matrices and spin-groups, Math. Z., 196, 369-390 (1987) · Zbl 0611.20027
[12] Elstrodt, J.; Grunewald, F.; Mennicke, J., Arithmetic applications of the hyperbolic lattice point theorem, Proc. Lond. Math. Soc. (3), 57, 2, 239-288 (1988) · Zbl 0752.11018
[13] Elstrodt, J.; Grunewald, F.; Mennicke, J., Kloosterman sums for Clifford algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces, Invent. Math., 101, 3, 641-668 (1990) · Zbl 0737.11013
[14] Eriksson-Bique, S.-L., \(k\)-hypermonogenic functions, (Begehr, H.; etal., Progress in Analysis, Proceedings of the 3rd International ISAAC Congress I (2003), World Sci. Publishing: World Sci. Publishing River Edge, NJ), 337-348 · Zbl 1284.30045
[15] Freitag, E., Hilbert Modular Forms (1990), Springer: Springer Berlin, Heidelberg, New York · Zbl 0702.11029
[16] D. Gehre, Quaternionic modular forms of degree two over \(\mathbb{Q}(- 3, - 1)\); D. Gehre, Quaternionic modular forms of degree two over \(\mathbb{Q}(- 3, - 1)\)
[17] Gürlebeck, K.; Kähler, U.; Ryan, J.; Sprößig, W., Clifford analysis over unbounded domains, Adv. in Appl. Math., 19, 2, 216-239 (1997) · Zbl 0877.30026
[18] Gürlebeck, K.; Sprössig, W., Quaternionic Analysis and Elliptic Boundary Value Problems (1990), Birkhäuser: Birkhäuser Basel · Zbl 0850.35001
[19] Klöcker, I., Der Maaßraum über \(Q(- 3, - 1) (1998)\), Lehrstuhl A für Mathematik, RWTH Aachen, Diploma thesis
[20] Kraußhar, R. S., Generalized Analytic Automorphic Forms in Hypercomplex Spaces, Front. Math. (2004), Birkhäuser: Birkhäuser Basel · Zbl 1058.30046
[21] Krieg, A., Eisenstein series on real, complex and quaternionic half-spaces, Pacific J. Math., 133, 2, 315-354 (1988) · Zbl 0657.10025
[22] Krieg, A., Eisenstein-series on the four-dimensional hyperbolic space, J. Number Theory, 30, 177-197 (1988) · Zbl 0657.10026
[23] Krieg, A., Eisenstein series on Kähler’s Poincaré group, (Berndt, R.; Riemenschneider, O., Erich Kähler, Mathematische Werke (2003), Walter de Gruyter: Walter de Gruyter Berlin), 891-906 · Zbl 1365.11106
[24] Laville, G.; Ramadanoff, I., Holomorphic Cliffordian functions, Adv. Appl. Clifford Algebr., 8, 2, 323-340 (1998) · Zbl 0940.30028
[25] Laville, G.; Ramadanoff, I., Elliptic Cliffordian functions, Complex Var. Theory Appl., 45, 4, 297-318 (2001) · Zbl 1059.30045
[26] Laville, G.; Ramadanoff, I., Jacobi elliptic Cliffordian functions, Complex Var. Theory Appl., 47, 9, 787-802 (2002) · Zbl 1022.30050
[27] Leutwiler, H., Modified Clifford analysis, Complex Var. Theory Appl., 17, 153-171 (1991) · Zbl 0758.30037
[28] Maaß, H., Automorphe Funktionen von mehreren Veränderlichen und Dirichletsche Reihen, Abh. Math. Semin. Univ. Hambg., 16, 53-104 (1949) · Zbl 0032.14501
[29] Ramadanoff, I., Monogenic, hypermonogenic and holomorphic Cliffordian functions - a survey, (Sekigawa, Kouei; etal., Trends in Differential Geometry, Complex Analysis and Mathematical Physics. Proceedings of 9th International Workshop on Complex Structures, Integrability and Vector Fields. Trends in Differential Geometry, Complex Analysis and Mathematical Physics. Proceedings of 9th International Workshop on Complex Structures, Integrability and Vector Fields, Sofia, Bulgaria, August 25-29, 2008 (2009), World Sci. Publishing: World Sci. Publishing Hackensack, NJ), 199-209 · Zbl 1183.15020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.