×

Top-quark forward-backward asymmetry in Randall-Sundrum models beyond the leading order. (English) Zbl 1294.81266

Summary: We calculate the \(t\overline{t}\) forward-backward asymmetry, \(A^{t}_{\text{FB}}\), in Randall-Sundrum (RS) models taking into account the dominant next-to-leading order (NLO) corrections in QCD. At Born level we include the exchange of Kaluza-Klein (KK) gluons and photons, the \(Z\) boson and its KK excitations, as well as the Higgs boson, whereas beyond the leading order (LO) we consider the interference of tree-level KK-gluon exchange with one-loop QCD box diagrams and the corresponding bremsstrahlungs corrections. We find that the strong suppression of LO effects, that arises due to the elementary nature and the mostly vector-like couplings of light quarks, is lifted at NLO after paying the price of an additional factor of \(\alpha_{s}/(4{\pi})\). In spite of this enhancement, the resulting RS corrections in \(A^{t}_{\text{FB}}\) remain marginal, leaving the predicted asymmetry SM-like. As our arguments are solely based on the smallness of the axial-vector couplings of light quarks to the strong sector, our findings are model-independent and apply to many scenarios of new physics that address the flavor problem via geometrical sequestering.

MSC:

81V05 Strong interaction, including quantum chromodynamics
83E15 Kaluza-Klein and other higher-dimensional theories
81T15 Perturbative methods of renormalization applied to problems in quantum field theory

Software:

Cuba; FeynArts; mcfm

References:

[1] Tevatron Electroweak Working Group and CDF and DØ collaboration, Combination of CDF and D0 Results on the Mass of the Top Quark, arXiv:0903.2503 [SPIRES].
[2] CDF collaboration, E. Thomson et al., Combination of Top Pair Production Cross Section Results, Conference Note 9913, October 19, 2009, http://www-cdf.fnal.gov/physics/new/top/2009/xsection/ttbar combined 46invfb/.
[3] DØ collaboration, Combination and interpretation of tt(bar) cross section measurements with the D0 detector, Conference Note 5907-CONF, March 12, 2009, http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/TOP/T79/.
[4] CDF collaboration, T. Aaltonen et al., Search for resonant \(t\overline t\) production in \(p\overline p\) collisions at \(\sqrt{s} = 1.96 - TeV \), Phys. Rev. Lett.100 (2008) 231801 [arXiv:0709.0705] [SPIRES]. · doi:10.1103/PhysRevLett.100.231801
[5] CDF collaboration, T. Aaltonen et al., Limits on the production of narrow \(t\overline t\) resonances in \(p\overline p\) collisions at \(\sqrt{s} = 1.96\,TeV \), Phys. Rev.D 77 (2008) 051102 [arXiv:0710.5335] [SPIRES].
[6] DØ collaboration, V.M. Abazov et al., Search for \(t\overline t\) resonances in the lepton plus jets final state in \(p\overline p\) collisions at \(\sqrt{s} = 1.96\,TeV \), Phys. Lett.B 668 (2008) 98 [arXiv:0804.3664] [SPIRES].
[7] A. Bridgeman, Measurement of the \(t\overline t\) differential cross section,\( {{{d\sigma }} \left/ {{d{M_{t\overline t }}}} \right.} \), in \(p\overline p\) collisions at \(\sqrt{s} = 1.96\,TeV \), FERMILAB-THESIS-2008-50.
[8] CDF collaboration, T. Aaltonen et al., First Measurement of the \(t\overline t\) Differential Cross Section \({{{d\sigma }} \left/ {{d{M_{t\overline t }}}} \right.}\) in c Collisions at \(\sqrt{s} = 1.96\,TeV \), Phys. Rev. Lett.102 (2009) 222003 [arXiv: 0903.2850] [SPIRES]. · doi:10.1103/PhysRevLett.102.222003
[9] T.A. Schwarz, Measurement of the front back asymmetry in top-antitop quark pairs produced in proton-antiproton collisions at center of mass energy = 1.96 TeV, FERMILAB-THESIS-2006-51, UMI-32-38081.
[10] DØ collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett.100 (2008) 142002 [arXiv:0712.0851] [SPIRES]. · doi:10.1103/PhysRevLett.100.142002
[11] CDF collaboration, T. Aaltonen et al., Forward-Backward Asymmetry in Top Quark Production in \(p\overline p\) Collisions at \(\sqrt{s} = 1.96\,TeV \), Phys. Rev. Lett.101 (2008) 202001 [arXiv:0806.2472] [SPIRES]. · doi:10.1103/PhysRevLett.101.202001
[12] CDF collaboration, G. Strycker et al., Measurement of the Forward-Backward Asymmetry in Top Pair Production in 3.2/fb of \(p\overline p\) Collisions at \(\sqrt{s} = 1.96\,TeV \), CDF/ANAL/TOP/PUBLIC/9724Note, March 17, 2009, http://www-cdf.fnal.gov/physics/new/top/2009/tprop/Afb/.
[13] CDF collaboration, G. Strycker et al., Measurement of the Inclusive Forward-Backward Asymmetry and its Rapidity Dependence A fb(|Δy|) of tt Production in 5.3/fb of Tevatron Data, CDF/ANAL/TOP/PUBLIC/10224Note, July 14, 2010, http://www-cdf.fnal.gov/physics/new/top/2010/tprop/Afb/.
[14] DØ collaboration, Measurement of the forward-backward production asymmetry of t and \(\overline t\) quarks in \(p\overline p \to t\overline t\) events, Conference Note 6062-CONF, July 23, 2010, http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/TOP/T90/.
[15] J.H. Kühn and G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks, Phys. Rev. Lett.81 (1998) 49 [hep-ph/9802268] [SPIRES]. · doi:10.1103/PhysRevLett.81.49
[16] J.H. Kühn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev.D 59 (1999) 054017 [hep-ph/9807420] [SPIRES].
[17] O. Antunano, J.H. Kühn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev.D 77 (2008) 014003 [arXiv:0709.1652] [SPIRES].
[18] L.G. Almeida, G.F. Sterman and W. Vogelsang, Threshold Resummation for the Top Quark Charge Asymmetry, Phys. Rev.D 78 (2008) 014008 [arXiv:0805.1885] [SPIRES].
[19] V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-Group Improved Predictions for Top-Quark Pair Production at Hadron Colliders, JHEP09 (2010) 097 [arXiv:1003.5827] [SPIRES]. · Zbl 1291.81378 · doi:10.1007/JHEP09(2010)097
[20] K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys.B 840 (2010) 129 [arXiv:1004.3284] [SPIRES]. · Zbl 1206.81145 · doi:10.1016/j.nuclphysb.2010.07.003
[21] A. Djouadi, G. Moreau, F. Richard and R.K. Singh, The forward-backward asymmetry of top quark production at the Tevatron in warped extra dimensional models, arXiv:0906.0604 [SPIRES].
[22] P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev.D 80 (2009) 051701 [arXiv:0906.5541] [SPIRES].
[23] S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev.D 81 (2010) 015004 [arXiv:0907.4112] [SPIRES].
[24] K. Cheung, W.-Y. Keung and T.-C. Yuan, Top Quark Forward-Backward Asymmetry, Phys. Lett.B 682 (2009) 287 [arXiv:0908.2589] [SPIRES].
[25] P.H. Frampton, J. Shu and K. Wang, A xigluon as Possible Explanation for \(p\overline p \to t\overline t\) Forward-Backward Asymmetry, Phys. Lett.B 683 (2010) 294 [arXiv:0911.2955] [SPIRES]. · doi:10.1016/j.physletb.2009.12.043
[26] J. Shu, T.M.P. Tait and K. Wang, Explorations of the Top Quark Forward-Backward Asymmetry at the Tevatron, Phys. Rev.D 81 (2010) 034012 [arXiv:0911.3237] [SPIRES].
[27] A. Arhrib, R. Benbrik and C.-H. Chen, Forward-backward asymmetry of top quark in diquark models, Phys. Rev.D 82 (2010) 034034 [arXiv:0911.4875] [SPIRES].
[28] I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in top quark pair production, Phys. Rev.D 81 (2010) 055009 [arXiv:0912.0972] [SPIRES].
[29] D.-W. Jung, P. Ko, J.S. Lee and S.-h. Nam, Model independent analysis of the forward-backward asymmetry of top quark production at the Tevatron, Phys. Lett.B 691 (2010) 238 [arXiv:0912.1105] [SPIRES].
[30] J. Cao, Z. Heng, L. Wu and J.M. Yang, Top quark forward-backward asymmetry at the Tevatron: a comparative study in different new physics models, Phys. Rev.D 81 (2010) 014016 [arXiv:0912.1447] [SPIRES].
[31] V. Barger, W.-Y. Keung and C.-T. Yu, Asymmetric Left-Right Model and the Top Pair Forward-Backward Asymmetry, Phys. Rev.D 81 (2010) 113009 [arXiv:1002.1048] [SPIRES].
[32] Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy and C.E.M. Wagner, Forward-Backward Asymmetry of Top Quark Pair Production, Phys. Rev.D 81 (2010) 114004 [arXiv:1003.3461] [SPIRES].
[33] B. Xiao, Y.-k. Wang and S.-h. Zhu, Forward-backward asymmetry and differential cross section of top quark in flavor violating Z′model at \(\mathcal{O}\left( {\alpha_s^2{\alpha_X}} \right) \), Phys. Rev.D 82 (2010) 034026 [arXiv:1006.2510] [SPIRES].
[34] R.S. Chivukula, E.H. Simmons and C.P. Yuan, A xigluons cannot explain the observed top quark forward-backward asymmetry, arXiv:1007.0260 [SPIRES].
[35] P. Ferrario and G. Rodrigo, Massive color-octet bosons and the charge asymmetries of top quarks at hadron colliders, Phys. Rev.D 78 (2008) 094018 [arXiv:0809.3354] [SPIRES].
[36] P. Ferrario and G. Rodrigo, Heavy colored resonances in top-antitop + jet at the LHC, JHEP02 (2010) 051 [arXiv:0912.0687] [SPIRES]. · doi:10.1007/JHEP02(2010)051
[37] C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys.B 147 (1979) 277 [SPIRES]. · doi:10.1016/0550-3213(79)90316-X
[38] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [SPIRES]. · Zbl 0946.81063 · doi:10.1103/PhysRevLett.83.3370
[39] N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev.D 61 (2000) 033005 [hep-ph/9903417] [SPIRES].
[40] H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett.B 473 (2000) 43 [hep-ph/9911262] [SPIRES]. · Zbl 0959.81123
[41] A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett.B 486 (2000) 153 [hep-ph/9911294] [SPIRES].
[42] Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry, Phys. Lett.B 474 (2000) 361 [hep-ph/9912408] [SPIRES]. · Zbl 1049.81671
[43] S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Bulk standard model in the Randall-Sundrum background, Phys. Rev.D 62 (2000) 084025 [hep-ph/9912498] [SPIRES].
[44] T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys.B 586 (2000) 141 [hep-ph/0003129] [SPIRES]. · Zbl 1009.83050 · doi:10.1016/S0550-3213(00)00392-8
[45] S.J. Huber and Q. Shafi, Fermion Masses, Mixings and Proton Decay in a Randall-Sundrum Model, Phys. Lett.B 498 (2001) 256 [hep-ph/0010195] [SPIRES].
[46] S.J. Huber, Flavor violation and warped geometry, Nucl. Phys.B 666 (2003) 269 [hep-ph/0303183] [SPIRES]. · doi:10.1016/S0550-3213(03)00502-9
[47] K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev.D 71 (2005) 016002 [hep-ph/0408134] [SPIRES].
[48] M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor Physics in the Randall-Sundrum Model: II. Tree-Level Weak-Interaction Processes, JHEP09 (2010) 017 [arXiv:0912.1625] [SPIRES]. · Zbl 1291.81419 · doi:10.1007/JHEP09(2010)017
[49] S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor Physics in the Randall-Sundrum Model: I. Theoretical Setup and Electroweak Precision Tests, JHEP10 (2008) 094 [arXiv:0807.4937] [SPIRES]. · doi:10.1088/1126-6708/2008/10/094
[50] K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev.D 77 (2008) 015003 [hep-ph/0612015] [SPIRES].
[51] M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, Δ F=2 Observables and Fine-Tuning in a Warped Extra Dimension with Custodial Protection, JHEP03 (2009) 001 [arXiv:0809.1073] [SPIRES]. · doi:10.1088/1126-6708/2009/03/001
[52] M. Bauer, S. Casagrande, L. Gründer, U. Haisch and M. Neubert, Little Randall-Sundrum models: ϵKstrikes again, Phys. Rev.D 79 (2009) 076001 [arXiv:0811.3678] [SPIRES].
[53] S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The Custodial Randall-Sundrum Model: from Precision Tests to Higgs Physics, JHEP09 (2010) 014 [arXiv:1005.4315] [SPIRES]. · Zbl 1291.81430 · doi:10.1007/JHEP09(2010)014
[54] F.A. Berends, K.J.F. Gaemers and R. Gastmans, α3-contribution to the angular asymmetry in e+e− → μ+μ−, Nucl. Phys.B 63 (1973) 381 [SPIRES].
[55] F.A. Berends, R. Kleiss, S. Jadach and Z. Was, QED Radiative Corrections to Electron-Positron Annihilation into Heavy Fermions, Acta Phys. Polon.B 14 (1983) 413 [SPIRES].
[56] T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun.168 (2005) 78 [hep-ph/0404043] [SPIRES]. · Zbl 1196.65052 · doi:10.1016/j.cpc.2005.01.010
[57] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J.C 63 (2009) 189 [arXiv:0901.0002] [SPIRES]. · Zbl 1369.81126 · doi:10.1140/epjc/s10052-009-1072-5
[58] P. Nason, S. Dawson and R.K. Ellis, The Total Cross-Section for the Production of Heavy Quarks in Hadronic Collisions, Nucl. Phys.B 303 (1988) 607 [SPIRES]. · doi:10.1016/0550-3213(88)90422-1
[59] J. Campbell and R.K. Ellis, MCFM — A Monte Carlo for FeMtobarn processes at Hadron Colliders, http://mcfm.fnal.gov.
[60] M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP09 (2008) 127 [arXiv:0804.2800] [SPIRES]. · doi:10.1088/1126-6708/2008/09/127
[61] N. Kidonakis and R. Vogt, The theoretical top quark cross section at the Tevatron and the LHC, Phys. Rev.D 78 (2008) 074005 [arXiv:0805.3844] [SPIRES].
[62] U. Langenfeld, S. Moch and P. Uwer, Measuring the running top-quark mass, Phys. Rev.D 80 (2009) 054009 [arXiv:0906.5273] [SPIRES].
[63] V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, T hreshold expansion at order α4Sfor the \(t\overline t\) invariant mass distribution at hadron colliders, Phys. Lett.B 687 (2010) 331 [arXiv:0912.3375] [SPIRES].
[64] W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC, Nucl. Phys.B 837 (2010) 90 [arXiv:1003.3926] [SPIRES]. · Zbl 1206.81139 · doi:10.1016/j.nuclphysb.2010.05.001
[65] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [SPIRES]. · Zbl 0994.81082 · doi:10.1016/S0010-4655(01)00290-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.