×

Rapidly convergent series and closed-form expressions for a class of integrals involving products of spherical Bessel functions. (English) Zbl 07866516

The following families of integrals involving a product of two Bessel functions \(J_n(\nu)\) are considered: \begin{align*} I(m,n,k,\alpha) &= \int_0^\infty J_{m+1/2}(\nu) J_{n+1/2}(\nu) \frac{1}{\nu^k\sqrt{\alpha^2-\nu^2}} \,\mathrm{d}\nu, \\ J(m,n,k,\alpha) &= \int_0^\infty J_{m+1/2}(\nu) J_{n+1/2}(\nu) \frac{\sqrt{\alpha^2-\nu^2}}{\nu^k} \,\mathrm{d}\nu. \end{align*} Due to the half-integer in the index, these Bessel functions can be written more conveniently in terms of spherical Bessel functions. The authors are interested in evaluating these integrals numerically for particular choices of the parameters \(m,n,k,\alpha\), which is important in studying the acoustic and electromagnetic scattering from circular disks and apertures. Their solution is a rapidly converging series that is based on the Mellin-Barnes integral representation of the product of Bessel functions. They implemented their method in Matlab and considered several examples to illustrate their results.

MSC:

33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
33F10 Symbolic computation of special functions (Gosper and Zeilberger algorithms, etc.)
65D20 Computation of special functions and constants, construction of tables
40A10 Convergence and divergence of integrals
40A30 Convergence and divergence of series and sequences of functions
Full Text: DOI

References:

[1] Lovat, G.; Burghignoli, P.; Araneo, R.; Celozzi, S.; Andreotti, A.; Assante, D.; Verolino, L., Shielding of a perfectly conducting disk: Exact and static analytical solution, Prog. Electromagn. Res. C, 95, 167-182, 2019
[2] Lovat, G.; Burghignoli, P.; Araneo, R.; Celozzi, S.; Andreotti, A.; Assante, D.; Verolino, L., Shielding of an imperfect metallic thin circular disk: Exact and low-frequency analytical solution, Prog. Electromagn. Res., 167, 1-10, 2020
[3] Lovat, G.; Burghignoli, P.; Araneo, R.; Celozzi, S., Magnetic-field penetration through a circular aperture in a perfectly-conducting plate excited by a coaxial loop, IET Microw. Antennas Propag., 15, 1147-1158, 2021
[4] Lovat, G.; Burghignoli, P.; Araneo, R.; Celozzi, S., Field penetration through a circular aperture in an impedance plate by an axially symmetric source, IEEE Trans. Antennas Propag., 70, 9, 8348-8359, 2022
[5] Lovat, G.; Burghignoli, P.; Araneo, R.; Celozzi, S., Magnetic-field transmission through a circular aperture in a magneto-conductive screen: Identification of aperture penetration and field diffusion contributions, IEEE Trans. Electromagn. Compat., 2023
[6] Lovat, G.; Burghignoli, P.; Araneo, R.; Celozzi, S., A dual integral equation approach for evaluating the shielding of thick circular disks against a coaxial loop, Appl. Sci., 13, 9, 5819, 2023
[7] C.J. Bouwkamp, On integrals occurring in the theory of diffraction of electromagnetic waves by a circular disk, in: Proc. Kon. Med. Akad. Wetensch, Vol. 53, 1950, pp. 654-661. · Zbl 0038.22402
[8] de Hoop, A. T., On the scalar diffraction by a circular aperture in an infinite plane screen, Appl. Sci. Res. Sect. B, 4, 1, 151-160, 1955 · Zbl 0057.42706
[9] Eggimann, W. H., Higher-order evaluation of electromagnetic diffraction by circular disks, IRE Trans. Microw. Theory Technol., 9, 5, 408-418, 1961
[10] Bliznyuk, N. Y.; Nosich, A. I.; Khizhnyak, A. N., Accurate computation of a circular-disk printed antenna axisymmetrically excited by an electric dipole, Microw. Opt. Technol. Lett., 25, 3, 211-216, 2000
[11] Lucido, M.; Panariello, G.; Schettino, F., Scattering by a zero-thickness PEC disk: A new analytically regularizing procedure based on Helmholtz decomposition and Galerkin method, Radio Sci., 52, 1, 2-14, 2017
[12] Lucido, M.; Schettino, F.; Panariello, G., Scattering from a thin resistive disk: A guaranteed fast convergence technique, IEEE Trans. Antennas Propag., 69, 1, 387-396, 2020
[13] Lucido, M.; Balaban, M. V.; Nosich, A. I., Plane wave scattering from thin dielectric disk in free space: Generalized boundary conditions, regularizing Galerkin technique and whispering gallery mode resonances, IET Microw. Antennas Propag., 15, 10, 1159-1170, 2021
[14] Lucido, M., Electromagnetic scattering from a graphene disk: Helmholtz-Galerkin technique and surface plasmon resonances, Mathematics, 9, 12, 1429, 2021
[15] Lucido, M.; Nosich, A. I., Analytical regularization approach to plane wave diffraction from circular hole in infinite resistive plane, IEEE Trans. Antennas Propag., 2023
[16] Maximon, L. C., On the evaluation of the integral over the product of two spherical Bessel functions, J. Math. Phys., 32, 3, 642-648, 1991 · Zbl 0735.33002
[17] Lucas, S., Evaluating infinite integrals involving products of Bessel functions of arbitrary order, J. Comput. Appl. Math., 64, 3, 269-282, 1995 · Zbl 0853.65028
[18] Golubović, R.; Polimeridis, A. G.; Mosig, J. R., The weighted averages method for semi-infinite range integrals involving products of Bessel functions, IEEE Trans. Antennas Propag., 61, 11, 5589-5596, 2013 · Zbl 1372.65340
[19] Yang, Y.; Ding, S.; Wang, W.; Wang, X.; Li, X., The numerical algorithms of infinite integrals involving products of Bessel functions of arbitrary order, J. Comput. Appl. Math., 41, 3, 116, 2022 · Zbl 1499.65733
[20] Lucido, M.; Di Murro, F.; Panariello, G., Electromagnetic scattering from a zero-thickness PEC disk: A note on the Helmholtz-Galerkin analytically regularizing procedure, Prog. Electromagn. Res. Lett., 71, 7-13, 2017
[21] Lucido, M.; Migliore, M. D.; Nosich, A. I.; Panariello, G.; Pinchera, D.; Schettino, F., Efficient evaluation of slowly converging integrals arising from MAP application to a spectral-domain integral equation, Electronics, 8, 12, 1500, 2019
[22] Aarts, R. M.; Janssen, A. J.E. M., Sound radiation quantities arising from a resilient circular radiator, J. Acoust. Soc. Am., 126, 4, 1776-1787, 2009
[23] Rdzanek, W. P., Sound scattering and transmission through a circular cylindrical aperture revisited using the radial polynomials, J. Acoust. Soc. Am., 143, 3, 1259-1282, 2018
[24] Rdzanek, W. P.; Wiciak, J.; Pawelczyk, M., Analysis of sound radiation from a vibrating elastically supported annular plate using compatibility layer and radial polynomials, J. Sound Vib., 519, Article 116593 pp., 2022
[25] Eason, G.; Noble, B.; Sneddon, I. N., On certain integrals of Lipschitz-Hankel type involving products of Bessel functions, Philos. Trans. R. Soc. Lond. Ser. A, 247, 935, 529-551, 1955 · Zbl 0064.06503
[26] Rawitscher, G. H.; Hirschorn, E. S., Accurate evaluation of an integral involving the product of two Bessel functions and a Gaussian, J. Comput. Phys., 68, 1, 104-126, 1987 · Zbl 0605.65012
[27] McPhedran, R. C.; Dawes, D. H.; Scott, T. C., On a Bessel function integral, Appl. Algebra Eng. Commun., 2, 3, 207-216, 1992 · Zbl 0755.65021
[28] Adamchik, V., The evaluation of integrals of Bessel functions via G-function identities, J. Comput. Appl. Math., 64, 3, 283-290, 1995 · Zbl 0853.65029
[29] Van Deun, J.; Cools, R., Integrating products of Bessel functions with an additional exponential or rational factor, Comput. Phys. Comm., 178, 8, 578-590, 2008 · Zbl 1196.65059
[30] Gebremariam, B.; Duguet, T.; Bogner, S. K., Symbolic integration of a product of two spherical Bessel functions with an additional exponential and polynomial factor, Comput. Phys. Comm., 181, 6, 1136-1143, 2010 · Zbl 1216.65033
[31] Fabrikant, V., Elementary exact evaluation of infinite integrals of the product of several spherical Bessel functions, power and exponential, Quart. Appl. Math., 71, 3, 573-581, 2013 · Zbl 1276.33023
[32] Ratnanather, J. T.; Kim, J. H.; Zhang, S.; Davis, A. M.J.; Lucas, S. K., Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions, ACM Trans. Math. Software, 40, 2, 1-12, 2014 · Zbl 1305.65105
[33] Ceballos, M. A., Numerical evaluation of integrals involving the product of two Bessel functions and a rational fraction arising in some elastodynamic problems, J. Comput. Appl. Math., 313, 355-382, 2017 · Zbl 1388.74117
[34] Belafhal, A.; El Halba, E. M.; Usman, T., An integral transform involving the product of Bessel functions and Whittaker function and its application, Int. J. Appl. Comput. Math., 6, 1-11, 2020 · Zbl 1468.33001
[35] Li, R. P.; Chen, X. B.; Duan, W. Y., Numerical study on integrals involving the product of Bessel functions and a trigonometric function arising in hydrodynamic problems, J. Comput. Appl. Math., 388, Article 113160 pp., 2021 · Zbl 1458.65022
[36] Groote, S.; Körner, J.; Pivovarov, A., On the evaluation of sunset-type Feynman diagrams, Nuclear Phys. B, 542, 1-2, 515-547, 1999 · Zbl 0942.81045
[37] Conway, J. T., Analytical solutions for the Newtonian gravitational field induced by matter within axisymmetric boundaries, Mon. Not. R. Astron. Soc., 316, 3, 540-554, 2000
[38] Tanzosh, J. P.; Stone, H. A., Motion of a rigid particle in a rotating viscous flow: An integral equation approach, J. Fluid Mech., 275, 225-256, 1994 · Zbl 0815.76088
[39] Tezer, M., On the numerical evaluation of an oscillating infinite series, J. Comput. Appl. Math., 28, 383-390, 1989 · Zbl 0684.65003
[40] Fikioris, G., Integral evaluation using the Mellin transform and generalized hypergeometric functions: Tutorial and applications to antenna problems, IEEE Trans. Antennas Propag., 54, 12, 3895-3907, 2006 · Zbl 1369.78430
[41] Vriza, A.; Kargioti, A.; Papakanellos, P. J.; Fikioris, G., Analytical evaluation of certain integrals occurring in studies of wireless communications systems using the Mellin-transform method, Phys. Comm., 31, 133-140, 2018
[42] Mystilidis, C.; Vriza, A.; Kargioti, A.; Papakanellos, P. J.; Zheng, X.; Vandenbosch, G. A.; Fikioris, G., The Mellin transform method: Electromagnetics, complex analysis, and educational potential, IEEE Antennas Propag. Mag., 64, 5, 111-119, 2022
[43] Fikioris, G., Mellin-Transform Method for Integral Evaluation: Introduction and Applications to Electromagnetics, 2022, Springer Nature Switzerland AG: Springer Nature Switzerland AG Switzerland
[44] Prudnikov, A. P.; Brychkov, Y. A.; Marichev, O. I., Evaluation of integrals and the Mellin transform, J. Sov. Math., 54, 6, 1239-1341, 1991 · Zbl 0725.44001
[45] Watson, G. N., A Treatise on the Theory of Bessel Functions, 1966, Cambridge University Press: Cambridge University Press London, UK · Zbl 0174.36202
[46] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products, 2014, Academic Press: Academic Press Burlington, MA · Zbl 0918.65002
[47] Dubovyk, I.; Gluza, J.; Somogyi, G., Mellin-Barnes Integrals: A Primer on Particle Physics Applications, 2022, Springer · Zbl 1503.81006
[48] Barnes, E. W., A new development of the theory of the hypergeometric functions, Proc. Lond. Math. Soc., 2, 1, 141-177, 1908 · JFM 39.0506.01
[49] Fox, C., The G and H functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98, 3, 395-429, 1961 · Zbl 0096.30804
[50] Fikioris, G.; Cottis, P. G.; Panagopoulos, A. D., On an integral related to biaxially anisotropic media, J. Comput. Appl. Math., 146, 2, 343-360, 2002 · Zbl 1015.33003
[51] Michalski, K. A.; Mosig, J. R., Efficient computation of Sommerfeld integral tails – methods and algorithms, J. Electromagn. Waves Appl., 30, 3, 281-317, 2016
[52] Takahasi, H.; Mori, M., Double exponential formulas for numerical integration, Publ. RIMS, 9, 3, 721-741, 1974 · Zbl 0293.65011
[53] Evans, G. A.; Forbes, R. C.; Hyslop, J., The tanh transformation for singular integrals, Int. J. Comput. Math., 15, 1-4, 339-358, 1984 · Zbl 0571.65019
[54] Levin, D., Development of non-linear transformations for improving convergence of sequences, Int. J. Comput. Math., 3, 1-4, 371-388, 1972 · Zbl 0274.65004
[55] Sidi, A., The numerical evaluation of very oscillatory infinite integrals by extrapolation, Math. Comp., 38, 158, 517-529, 1982 · Zbl 0508.65011
[56] Luke, Y. L., Special Functions and their Approximations: Vol. 1, 1969, Academic Press: Academic Press San Diego, CA · Zbl 0193.01701
[57] Beals, R.; Szmigielski, J., Meijer G-functions: A gentle introduction, Notices Amer. Math. Soc., 60, 7, 866-872, 2013 · Zbl 1322.33001
[58] Kilbas, A. A.; Saxena, R. K.; Saigo, M.; Trujillo, J. J., The generalized hypergeometric function as the Meijer G-function, Analysis, 36, 1, 1-14, 2016 · Zbl 1336.33017
[59] Liakhovetski, G. V., An algorithm for a series expansion of the Meijer G-function, Integral Transform. Spec. Funct ., 12, 1, 53-64, 2001 · Zbl 1023.33008
[60] Wolfram Research, Inc., G. V., Mathematica, version 13.3, 2023, URL: https://www.wolfram.com/mathematica
[61] The MathWorks Inc., G. V., MATLAB version: 9.14.0.2206163 (R2023a), 2023, URL: https://www.mathworks.com
[62] Fields, J. L., The asymptotic expansion of the Meijer G-function, Math. Comp., 26, 119, 757-765, 1972 · Zbl 0268.33008
[63] Stoyanov, B. J.; Farrell, R. A.; Bird, J. F., Asymptotic expansions of integrals of two Bessel functions via the generalized hypergeometric and Meijer functions, J. Comput. Appl. Math., 50, 1-3, 533-543, 1994 · Zbl 0804.33002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.