×

On discrete field theory properties of the dimer and Ising models and their conformal field theory limits. (English) Zbl 1285.82014

Summary: We study various mathematical aspects of discrete models on graphs, specifically the dimer and the Ising models. We focus on proving gluing formulas for individual summands of the partition function. We also obtain partial results regarding conjectured limits realized by fermions in rational conformal field theories.{
©2013 American Institute of Physics}

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] Alvarez-Gaume, L.; Moore, G.; Vafa, C., Theta functions, modular invariance, and strings, Commun. Math. Phys., 106, 1, 1-40 (1986) · Zbl 0605.58049 · doi:10.1007/BF01210925
[2] Beilinson, A. A.; Drinfeld, V., Chiral Algebras, 51 (2004) · Zbl 1138.17300
[3] Borcherds, R. E., Monstrous moonshine and monstrous Lie superalgebras, Invent. Math., 109, 405-444 (1992) · Zbl 0799.17014 · doi:10.1007/BF01232032
[4] Cimasoni, D.; Reshetikhin, N., Dimers on surface graphs and spin structures, Commun. Math. Phys., 275, 187-208 (2007) · Zbl 1135.82006 · doi:10.1007/s00220-007-0302-7
[5] Cimasoni, D.; Reshetikhin, N., Dimers on surface graphs and spin structures II, Commun. Math. Phys., 281, 2, 445-468 (2008) · Zbl 1168.82012 · doi:10.1007/s00220-008-0488-3
[6] Cohn, H.; Kenyon, R.; Propp, J., A variational principle for domino tilings, J. Am. Math. Soc., 14, 297-346 (2001) · Zbl 1037.82016 · doi:10.1090/S0894-0347-00-00355-6
[7] Di Francesco, P.; Mathieu, P.; Sénéchal, D., Conformal Field Theory (1997) · Zbl 0869.53052
[8] Dijkgraaf, R.; Orlando, D.; Reffert, S., Dimer models, free fermions, and super quantum mechanics, Adv. Theor. Math. Phys., 13, 5, 1255-1315 (2009) · Zbl 1214.82013
[9] Feingold, A.; Ries, F. X.; Weiner, M. D.; Dong, C.; Mason, G., Spinor construction of the c = 1/2 minimal model, Moonshine, the Monster, and Related Topics, 193, 45-92 (1995) · Zbl 0842.17046
[10] Ferdinand, A., Statistical mechanics of dimers on a quadratic lattice, J. Math. Phys., 8, 2332-2339 (1967) · doi:10.1063/1.1705162
[11] Fiore, T.; Hu, P.; Kriz, I., Laplaza sets, or how to select coherence diagrams for pseudo algebras, Adv. Math., 218, 1705-1722 (2008) · Zbl 1145.81048 · doi:10.1016/j.aim.2007.05.001
[12] Fiore, T.; Kriz, I., What is the Jacobian of a Riemann surface with boundary?, Deformation Spaces, 5374 (2010) · Zbl 1206.14054
[13] Fisher, M. E., On the dimer solution of planar Ising problems, J. Math. Phys., 7, 10, 1776 (1966) · doi:10.1063/1.1704825
[14] Frenkel, I.; Lepowski, J.; Meurman, A., Vertex Operator Algebras and the Monster (1988) · Zbl 0674.17001
[15] Galluccio, A.; Loebl, M., On the theory of Pfaffian Orientations I, Electron. J. Comb., 6, 1 (1999)
[16] Hassell, A., Analytic surgery and analytic torsion, Commun. Anal. Geom., 6, 255-289 (1998) · Zbl 0926.58004
[17] Hortsch, R.; Kriz, I.; Pultr, A., A universal approach to vertex algebras, J. Algebra., 324, 1731-1753 (2010) · Zbl 1275.17042 · doi:10.1016/j.jalgebra.2010.05.012
[18] Hu, P.; Kriz, I., Conformal field theory and elliptic cohomology, Adv. Math., 189, 2, 325-412 (2004) · Zbl 1071.55004 · doi:10.1016/j.aim.2003.11.012
[19] 19.Y.-Z.Huang and J.Lepowski, “A theory of tensor products for module categories for a vertex operator algebra. I,” Selecta Math., New Ser.1(4), 699-756 (1995);10.1007/BF01587908Y.-Z.Huang and J.Lepowski, “A theory of tensor products for module categories for a vertex operator algebra. II,” Selecta Math., New Ser.1(4), 757-786 (1995).10.1007/BF01587909 · Zbl 0854.17033
[20] Kasteleyn, P. W., Dimer statistics and phase transitions, J. Math. Phys., 4, 287-293 (1963) · doi:10.1063/1.1703953
[21] Kenyon, R., The Laplacian and Dirac operators on critical planar graphs, Invent. Math., 150, 409-439 (2002) · Zbl 1038.58037 · doi:10.1007/s00222-002-0249-4
[22] Kriz, I., On spin and modularity in conformal field theory, Ann. Sci. de ENS, 36, 4, 57-112 (2003) · Zbl 1028.81050 · doi:10.1016/S0012-9593(03)00003-X
[23] Kriz, I.; Xiu, Y., Tree field algebras: An algebraic axiomatization of intertwining vertex operators, Archivum Mathematicum, 48, 5, 353-370 (2012) · Zbl 1274.17042
[24] Loebl, M.; Masbaum, G., On the optimality of the Arf invariant formula for the graph polynomials, Adv. Math., 226, 1, 332-349 (2011) · Zbl 1222.05109 · doi:10.1016/j.aim.2010.06.021
[25] Loebl, M. and Somberg, P., “Discrete Dirac operators, critical embeddings and Ihara-Selberg functions,” 2009, see . · Zbl 1305.05131
[26] Mercat, C., Exponentials form a basis of discrete holomorphic functions · Zbl 1080.30042
[27] Norine, S., Drawing 4-Pfaffian graphs on the torus, Combinatorica, 29, 109-119 (2009) · Zbl 1517.05125 · doi:10.1007/s00493-009-2354-0
[28] Miranda, A. A. A.; Lucchesi, C. L., Matching signatures and Pfaffian graphs, Discrete Math., 311, 4, 289-294 (2011) · Zbl 1222.05213 · doi:10.1016/j.disc.2010.10.014
[29] Onsager, L., Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev., 65, 3-4, 117-149 (1944) · Zbl 0060.46001 · doi:10.1103/PhysRev.65.117
[30] Pressley, A. N.; Segal, G. B., Loop Groups, 318 (1988) · Zbl 0638.22009
[31] 31.G.Segal, “The definition of conformal field theory,” in Differential Gometrical Methods in Theoretical Physics (Como, 1987); G.Segal, NATO Adv. Study Inst. Ser., Ser. C250, 165-171 (1988). · Zbl 0657.53060
[32] Tesler, G., Matching in graphs on non-orientable surfaces, J. Comb. Theory, Ser. B, 78, 198-231 (2000) · Zbl 1025.05052 · doi:10.1006/jctb.1999.1941
[33] van der Waerden, B. L., Die lange Reichweite der regelmassigen Atomanordnung in Mischkristallen, Z. Physik, 118, 473 (1941) · Zbl 0026.28301 · doi:10.1007/BF01342928
[34] 34.E.Witten, “Free fermions on an algebraic curve,” The Mathematical Heritage of Hermann Weyl (American Mathematical Society, Durham, NC, 1987); E.Witten, Proc. Symp. Pure Math.48, 329-344 (1988).10.1090/pspum/048/974345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.