×

Classification of degenerations of curves of genus three via Matsumoto-Montesinos’ theorem. (English) Zbl 1094.14006

From the introduction: Let \(\phi:S\to\Delta\) be a proper surjective holomorphic map from a complex surface \(S\) to the unit disk \(\Delta= \{t\in \mathbb C\mid |t|< 1\}\) such that \(\phi^{-1}(t)\) is a smooth curve of genus \(g\geq1\) for any \(t\in \Delta^* =\Delta-\{0\}\). We call \(\phi\) a degeneration of curves of genus \(g\) and call \(F =\phi^{-1}(0)\) the singular fiber. The most fundamental problem of degenerations of curves is to classify singular fibers, their monodromies and moduli points. After the monumental work of K. Kodaira [Ann. Math. (2) 71, 111–152 (1960; Zbl 0098.13004)] for elliptic curves, Y. Namikawa and K. Ueno [Manuscr. Math. 9, 143–186 (1973; Zbl 0263.14007)] classified singular fibers of genus two and determined their homological monodromies and the limits of their period matrices.
The main result of this paper is to classify singular fibers of genus three and determine their topological monodromies and the strata of their moduli points. More precisely, we explicitly determine the conjugacy class, arising from the usual monodromy action for each degeneration, of the mapping class group of a Riemann surface of genus three and determine the topological type of the stable curve which is the limit of the moduli map in Deligne-Mumford’s compactified moduli space \(\overline{{\mathbf M}}_3\) of genus three.
Our basic tools are two theorems that where studied and developed y several authors and settled by Y. Matsumoto and J. M. Montesinos-Amilibia [Bull. Am. Math. Soc., New Ser. 30, No. 1, 70–75 (1994; Zbl 0797.30036)].

MSC:

14D06 Fibrations, degenerations in algebraic geometry
14H45 Special algebraic curves and curves of low genus
14H15 Families, moduli of curves (analytic)
57M99 General low-dimensional topology
30F99 Riemann surfaces
Full Text: DOI

References:

[1] M. Asada, M. Matsumoto and T. Oda, Local monodromy on the fundamental groups of algebraic curves along a degenerate stable curves, J. Pure and Applied Alg. 103 (1995), 235–283. · Zbl 0867.14011 · doi:10.1016/0022-4049(94)00112-V
[2] L. Bers, Space of degenerating Riemann surfaces, Ann. of Math. Studies 79, Princeton Univ. Press, New Jersey (1975), 43–55. · Zbl 0294.32016
[3] L. Bers, An extremal problem for quasiconformal mappings and a theorem of Thurston, Acta Math. 141 (1978), 73–98. · Zbl 0389.30018 · doi:10.1007/BF02545743
[4] C. H. Clemens, Picard-Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities, Trans. Amer. Math. Soc. 136 (1969), 93–108. · Zbl 0185.51302 · doi:10.2307/1994703
[5] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. I. H. E. S. 36 (1969), 75–110. · Zbl 0181.48803 · doi:10.1007/BF02684599
[6] C. J. Earle and P. L. Sipe, Families of Riemann surfaces over the punctured disk, Pacific J. Math. 150 (1991), 79–86. · Zbl 0734.30039 · doi:10.2140/pjm.1991.150.79
[7] C. Faber, Chow rings of moduli spaces of curves I: The Chow ring of \(\barM_3\), Ann. of Math. 132 (1990), 331–419. · Zbl 0721.14013 · doi:10.2307/1971525
[8] J. Harvey, Cyclic groups of automorphisms of compact Riemann surfaces, Quart. J. Math. Oxford Ser. (2) 17 (1966), 86–97. · Zbl 0156.08901 · doi:10.1093/qmath/17.1.86
[9] Y. Imayoshi, Holomorphic families of Riemann surfaces and Teichmuller spaces, in Riemann surfaces and related topics , (I. Kra and B. Maskit, eds.) Ann. of Math. Studies 97 (1981), 277–300. · Zbl 0476.32025
[10] S. P. Kerchhoff, The Nielsen realization problem, Ann. of Math. 117 (1983), 235–265. JSTOR: · Zbl 0528.57008
[11] K. Kodaira, On compact complex analytic surfaces II, Ann. of Math. 77 (1963), 563–626. · Zbl 0118.15802 · doi:10.2307/1970131
[12] Y. Matsumoto and J. M. Montesinos-Amilibia, Pseudo-periodic maps and degeneration of Riemann surfaces I, II, Preprints, Univ. of Tokyo and Univ. Complutense de Madrid, 1991/1992.
[13] Y. Matsumoto and J. M. Montesinos-Amilibia, Pseudo-periodic homeomorphisms and degeneration of Riemann surfaces, Bull. Amer. Math. Soc. 30 (1994), 70–75. · Zbl 0797.30036 · doi:10.1090/S0273-0979-1994-00437-9
[14] M. Mendes-Lopes, The relative canonical algebra for genus three fibrations, Doctoral dissertation at Univ. Warwick, 1988.
[15] Y. Namikawa and K. Ueno, On fibers in families of curves of genus two I, singular fibers of elliptic type, in Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki (Y. Kusunoki, S. Mizohata, M. Nagata, H. Toda, M. Yamaguchi, H. Yoshizawa, eds.) pp. 297–371, 1973, Kinokuniya, Tokyo. · Zbl 0268.14004
[16] Y. Namikawa and K. Ueno, The complete classification of fibers in pencils of curves of genus two, Manuscripta Math. 9 (1973), 143–186. · Zbl 0263.14007 · doi:10.1007/BF01297652
[17] J. Nielsen, Die Structur periodischer Transformationen von Flächen, Mat.-Fys. Medd. Danske Vid. Selsk. 15 (1937). English translation: in Collected Papers 2, Birkhäuser, 1986.
[18] J. Nielsen, Surface transformation classes of algebraically finite type, Mat.-Fys. Medd. Danske Vid. Selsk. 21 (1944), 3–89. English translation: in Collected Papers 2, Birkhäuser, 1986. · Zbl 0063.05952
[19] H. Shiga and H. Tanigawa, On the Maskit coordinates of Teichmüller spaces and modular transformation, Kodai Math. J. 12 (1989), 437–443. · Zbl 0698.32013 · doi:10.2996/kmj/1138039108
[20] S. Takamura, Cyclic quotient construction of degenerations of complex manifolds, · Zbl 1100.14020
[21] T. Terasoma, Degeneration of curves and analytic deformations, · Zbl 0884.14002
[22] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1989), 417–431. · Zbl 0674.57008 · doi:10.1090/S0273-0979-1988-15685-6
[23] K. Uematsu, Numerical classification of singular fibers in genus 3 pencils, J. Math. Kyoto Univ. 39 (1999), 763–782. · Zbl 0978.14006
[24] A. Wiman, Ueber die hyperelliptischen Kurven und diejenigen vom Geschlechte=3, welche eindeutige Transformationen in sich zulassen, Bihang. Kengle. Svenska Vetenkaps-Akademiens Hendlingar, Stockholm, 1895–1896. · JFM 26.0658.03
[25] G. B. Winters, On the existence of certain families of curves, Amer. J. Math. 96 (1974), 215–228. · Zbl 0334.14004 · doi:10.2307/2373628
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.