×

A variant of Jacobi type formula for Picard curves. (English) Zbl 1188.33022

The classical Jacobi formula for the elliptic integrals shows a relation between Jacobi’s theta constants and periods of elliptic curves \(E(\lambda): w^2=z(z-1)(z-\lambda)\). In other words, it expresses the modular form \(\vartheta^{4} _{00}(\tau)\) with respect to the principal congruence subgroup \(\Gamma (2)\) of \(\text{PSL}(2,\mathbb Z)\) in terms of the Gauss hypergeometric function \(F(1/2, 1/2, 1; 1-\lambda)\). This is done by the inverse of the period map for the family of elliptic curves \(E(\lambda)\).
A similar formula is given for the family of (genus 3) Picard curves \(C(\lambda_1,\lambda_2): w^3=z(z-1)(z-\lambda_1)(z-\lambda_2)\):
The inverse of the period map for \(C(\lambda_1,\lambda_2)\) establishes an expression of the modular form \(\vartheta_0^3(u,v)\) (defined on a two dimensional complex ball \(\mathcal{D}=\{ 2\operatorname{Re}v+|u|^2<0\}\), that can be realized as a Shimura variety in the Siegel upper half space of degree 3) in terms of the Appell hypergeometric function \(F_1(1/3, 1/3, 1/3, 1; 1-\lambda_1,1-\lambda_2)\).

MSC:

33C65 Appell, Horn and Lauricella functions
14K25 Theta functions and abelian varieties
Full Text: DOI

References:

[1] P. Appell, Sur les Fonctions hypergéométriques de plusieurs variables les polynomes d’Hermite et autres fonctions sphériques dans l’hyperspace, Gauthier-Villars, Paris, 1925. · JFM 51.0281.09
[2] J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi’s identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), 691-701. · Zbl 0725.33014 · doi:10.2307/2001551
[3] P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, I.H.E.S. Pub. Math., 63 (1986), 5-89. · Zbl 0615.22008 · doi:10.1007/BF02831622
[4] C. F. Gauss, Hundert Thoreme Über die Neuen Transscendenten (in Gauss Werke III), Königlichen Gesellschaft der Wissenschaften zu Göttingen, 1866.
[5] E. Goursat, Sur l’équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique, Annales scientifiques de l’É.N.S., \(2^{e}\) série, t., 10 (1881), pp. 3-142.
[6] C. G. J. Jacobi, Gesammelte Werke I, Chelsea, New York, 1969.
[7] K. Koike and H. Shiga, Isogeny formulas for the Picard modular form and a three terms arithmetic geometric mean, J. Number Theory, 124 (2007), 123-141. · Zbl 1128.11026 · doi:10.1016/j.jnt.2006.08.002
[8] K. Koike and H. Shiga, An extended Gauss AGM and corresponding Picard modular forms, J. Number Theory, 128 (2008), 2097-2126. · Zbl 1217.11050 · doi:10.1016/j.jnt.2007.12.001
[9] K. Matsumoto, T. Terasoma and S. Yamazaki, Jacobi’s formula for Hesse cubic curves, to appear in Acta Math. Vietnam., Proceedings of the Conference Complex Geometry. · Zbl 1197.14032
[10] D. Mumford, Tata lectures on Theta I, Birkhäuser, Stüttgart, 1982.
[11] E. Picard, Sur les fonctions de deux variables indépendantes analogues aux fonctions modulaires, Acta math., 2 (1883), 114-135. · JFM 15.0432.01 · doi:10.1007/BF02612158
[12] H. Shiga, On the representation of the Picard modular function by \(\theta\) constants I-II, Pub. Res. Inst. Math. Sci. Kyoto Univ., 24 (1988), 311-360. · Zbl 0678.10020 · doi:10.2977/prims/1195175031
[13] T. Terada, Fonctions hypergéométriques \(F_{1}\) et fonctions automorphes, I, J. Math. Soc. Japan, 35 (1983), 451-475. · Zbl 0506.33001 · doi:10.2969/jmsj/03530451
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.