×

The limiting behaviour of the Hermitian-Yang-Mills flow over compact non-Kähler manifolds. (English) Zbl 1478.53147

The authors study asymptotic properties of the Hermitian-Yang-Mills flow \(H^{-1} \frac{\partial H}{\partial t}= 2(i\Lambda_{\omega}F_H - \lambda Id_E), H(0)=H_0\) over a compact non-Kähler manifold \((X, g)\) with the Kähler form \(\omega\) satisfying the Gauduchon and Astheno-Kähler condition where \((E,H_0)\) is a Hermitian vector bundle over \(M\) and \(F_H\) is the curvature of the Chern connection for \((E,H)\).
Let \(A\) be a connection on \(E\) and \(F_A\) be its curvature. The authors prove:
Theorem. Let \((X, \omega)\) be an \(n\)-dimensional compact Hermitian manifold with \(\omega\) satisfying \(\partial\bar{\partial}\omega^{n-1} = \partial\bar{\partial}\omega^{n-2} = 0\).
Suppose \(A(t)\) is the global smooth solution of the heat flow \(\frac{\partial A}{\partial t} = i(\bar{\partial}_A -\partial_A)\Lambda_{\omega}F_A\), on the Hermitian vector bundle \((E,H_0)\) with the initial data \(A_0=(\bar{\partial}_E,H_0)\) over \((X, \omega)\). Then
(1) for every sequence \(t_k \rightarrow\infty\), there is a subsequence \(t_{k_j}\) such that as \(t_{k_j} \rightarrow\infty\), \(A(t_{k_j} )\) converges modulo gauge transformations to a connection \(A_{\infty}\) satisfying \(D_{A_{\infty}}\Lambda_{\omega}F_{A_{\infty}} = 0\) on the Hermitian vector bundle \((E_{\infty},H_{\infty})\) in \(C^{\infty}_{loc}\) topology outside \(\Sigma\), where \(\Sigma\) is a closed set of Hausdorff codimension at least 4;
(2) the limiting \((E_{\infty},H_{\infty}, \bar{\partial}_{A_{\infty}})\) can be extended to the whole X as a reflexive sheaf with a holomorphic orthogonal splitting \[(E_{\infty},H_{\infty},A_{\infty}) =\bigoplus_{i=1}^l(E^i_{\infty},H^i_{\infty},A^i_{\infty}),\] where \(l\) is the number of distinct eigenvalues of \(\Lambda_{\omega}F_{A_{\infty}}\) on \(X -\Sigma\) and \(H^i_{\infty}\) is an admissible Hermitian-Einstein metric on the reflexive sheaf \(E^i_{\infty}\).

MSC:

53E30 Flows related to complex manifolds (e.g., Kähler-Ricci flows, Chern-Ricci flows)
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals
53C55 Global differential geometry of Hermitian and Kählerian manifolds
53C56 Other complex differential geometry

References:

[1] Atiyah, M.; Bott, R., The Yang-Mills equations over Riemann surfaces, Philos Trans R Soc Lond Ser A Math Phys Eng Sci, 308, 523-615 (1983) · Zbl 0509.14014
[2] Bando, B.; Siu, Y. Y., Stable sheaves and Einstein-Hermitian metrics, Geometry and Analysis on Complex Manifolds, 39-50 (1984), River Edge: World Scientific, River Edge
[3] Chen, Y. M.; Shen, C. L., Monotonicity formula and small action regularity for Yang-Mills flows in higher dimensions, Calc Var Partial Differential Equations, 2, 389-403 (1994) · Zbl 0822.53017 · doi:10.1007/BF01192090
[4] Chen, Y. M.; Shen, C. L., Evolution problem of Yang-Mills flow over 4-dimensional manifold, Variational Methods in Nonlinear Analysis, 63-66 (1995), Basel: Gordon and Breach, Basel · Zbl 0977.53506
[5] Chen, Y. M.; Struwe, M., Existence and partial regularity results for the heat flow for harmonic maps, Math Z, 201, 83-103 (1989) · Zbl 0652.58024 · doi:10.1007/BF01161997
[6] Daskalopoulos, D., The topology of the space of stable bundles on a compact Riemann surface, J Differential Geom, 36, 699-746 (1992) · Zbl 0785.58014 · doi:10.4310/jdg/1214453186
[7] Daskalopoulos, D.; Wentworth, R., Convergence properties of the Yang-Mills flow on Kähler surfaces, J Reine Angew Math, 575, 69-99 (2004) · Zbl 1063.53026
[8] Demailly J-P. Complex analytic and differential geometry. https://doi.org/www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf, 2009
[9] Donaldson, S. K., Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc Lond Math Soc (3), 50, 1-26 (1985) · Zbl 0529.53018 · doi:10.1112/plms/s3-50.1.1
[10] Donaldson, S. K., Infinite determinants, stable bundles and curvature, Duke Math J, 54, 231-247 (1987) · Zbl 0627.53052 · doi:10.1215/S0012-7094-87-05414-7
[11] Donaldson, S. K.; Kronheimer, P. B., The Geometry of Four-Manifolds (1990), Oxford: Clarendon Press, Oxford · Zbl 0820.57002
[12] Gauduchon, P., La 1-forme de torsion d’une variete hermitienne compacte, Math Ann, 267, 495-518 (1984) · Zbl 0523.53059 · doi:10.1007/BF01455968
[13] Hong, M. C.; Tian, G., Asymptotical behaviour of the Yang-Mills flow and singular Yang-Mills connections, Math Ann, 330, 441-472 (2004) · Zbl 1073.53084 · doi:10.1007/s00208-004-0539-9
[14] Jost, J.; Yau, S. T., A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry, Acta Math, 170, 221-254 (1993) · Zbl 0806.53064 · doi:10.1007/BF02392786
[15] Li, J.; Yau, S. T., Hermitian-Yang-Mills connection on non-Kähler manifolds, Mathematical Aspects of String Theory, 560-573 (1987), Singapore: World Scientific, Singapore · Zbl 0664.53011
[16] Li, J. Y.; Zhang, C. J.; Zhang, X., The limit of the Hermitian-Yang-Mills flow on reflexive sheaves, Adv Math, 325, 165-214 (2018) · Zbl 1381.53046 · doi:10.1016/j.aim.2017.11.029
[17] Li, J. Y.; Zhang, X., The limit of the Yang-Mills-Higgs flow on Higgs bundles, Int Math Res Not IMRN, 1, 232-276 (2017) · Zbl 1405.53090 · doi:10.1093/imrn/rnw008
[18] Lübke, M.; Teleman, A., The Kobayashi-Hitchin Correspondence (1995), Singapore: World Scientific, Singapore · Zbl 0849.32020
[19] McNamara, J.; Zhao, Y., Limiting behavior of Donaldson’s heat flow on non-Kähler surfaces, ArXiv, 1403.8037 (2014)
[20] Sibley, B., Asymptotics of the Yang-Mills flow for holomorphic vector bundles over Kähler manifolds: The canonical structure of the limit, J Reine Angew Math, 706, 123-191 (2015) · Zbl 1329.58006
[21] Uhlenbeck, K. K., Connections with L^p bounds on curvarure, Comm Math Phys, 83, 31-42 (1982) · Zbl 0499.58019 · doi:10.1007/BF01947069
[22] Uhlenbeck, K. K.; Yau, S. T., On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm Pure Appl Math, 39, 257-293 (1986) · Zbl 0615.58045 · doi:10.1002/cpa.3160390714
[23] Zhang, X., Hermitian-Einstein metrics on holomorphic vector bundles over Hermitian manifolds, J Geom Phys, 53, 315-335 (2005) · Zbl 1075.58010 · doi:10.1016/j.geomphys.2004.07.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.