×

An explicit form of the polynomial part of a restricted partition function. (English) Zbl 1392.11080

Summary: We prove an explicit formula for the polynomial part of a restricted partition function, also known as the first Sylvester wave. This is achieved by way of some identities for higher-order Bernoulli polynomials, one of which is analogous to Raabe’s well-known multiplication formula for the ordinary Bernoulli polynomials. As a consequence of our main result we obtain an asymptotic expression of the first Sylvester wave as the coefficients of the restricted partition grow arbitrarily large.

MSC:

11P81 Elementary theory of partitions
11B68 Bernoulli and Euler numbers and polynomials

Software:

PARTITIONS; DLMF

References:

[1] Andrews, G.E.: The theory of partitions. Addison-Wesley, Reading (1976) · Zbl 0371.10001
[2] Bayad, A., Beck, M.: Relations for Bernoulli-Barnes numbers and Barnes zeta functions. Int. J. Number Theory 10(5), 1321-1335 (2014) · Zbl 1369.11018 · doi:10.1142/S1793042114500298
[3] Beck, M., Gessel, I.M., Komatsu, T.: The polynomial part of a restricted partition function related to the Frobenius problem. Electron. J. Combin. 8(1), Note 7 (2001) · Zbl 0982.05010
[4] Beck, M., Robins, S.: Computing the continuous discretely. Integer-point enumeration in polyhedra, 2nd edn. Springer, New York (2015) · Zbl 1339.52002
[5] Dickson, L.E.: History of the Theory of Numbers. Volume II: Diophantine Analysis. The Carnegie Institute, Washington, D.C. (1919) · JFM 47.0100.04
[6] Dilcher, K., Vignat, C.: General convolution identities for Bernoulli and Euler polynomials. J. Math. Anal. Appl. 435(2), 1478-1498 (2016) · Zbl 1400.11063 · doi:10.1016/j.jmaa.2015.11.006
[7] Dowker, J.S.: Relations between the Ehrhart polynomial, the heat kernel and Sylvester waves. (2011). PreprintarXiv:1108.1760v1 [math.NT] · Zbl 1242.05020
[8] Dowker J.S.: On Sylvester waves and restricted partitions. (2013). PreprintarXiv:1302.6172v2 [math.NT] · Zbl 1092.05005
[9] Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, Vol. I. Based, in Part, on Notes Left by Harry Bateman. McGraw-Hill Book Company, Inc., New York (1953) · Zbl 0058.34103
[10] Fel, L.G., Rubinstein, B.Y.: Sylvester waves in the Coxeter groups. Ramanujan J. 6(3), 307-329 (2002) · Zbl 1018.11052 · doi:10.1023/A:1019749432120
[11] Gessel, I.M.: Applications of the classical umbral calculus. Algebra Universalis 49, 397-434 (2003) · Zbl 1092.05005 · doi:10.1007/s00012-003-1813-5
[12] Glaisher, J.W.L.: Formulae for partitions into given elements, derived from Sylvester’s theorem. Quart. J. Pure Appl. Math. 40, 275-348 (1908) · JFM 40.0235.04
[13] Nörlund, N.E.: Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin (1924) · JFM 50.0315.02 · doi:10.1007/978-3-642-50824-0
[14] O’Sullivan, C.: On the partial fraction decomposition of the restricted partition generating function. Forum Math. 27(2), 735-766 (2015) · Zbl 1386.11111
[15] Olver, F.W.J., et al. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010). http://dlmf.nist.gov/ · Zbl 1198.00002
[16] Raabe, J.L.: Zurückführung einiger Summen und bestimmten Integrale auf die Jacob-Bernoullische Function. J. Reine Angew. Math. 42, 348-367 (1851) · ERAM 042.1172cj · doi:10.1515/crll.1851.42.348
[17] Rieger, G.J.: Über Partitionen. Math. Ann. 138, 356-362 (1959) · Zbl 0088.25701 · doi:10.1007/BF01344156
[18] Rota, G.-C., Taylor, B.D.: The classical umbral calculus. SIAM J. Math. Anal. 25(2), 694-711 (1994) · Zbl 0797.05006 · doi:10.1137/S0036141093245616
[19] Rubinstein, B.Y.: Expression for restricted partition function through Bernoulli polynomials. Ramanujan J. 15(2), 177-185 (2008) · Zbl 1153.11051 · doi:10.1007/s11139-007-9070-4
[20] Rubinstein, B.Y., Fel, L.G.: Restricted partition functions as Bernoulli and Eulerian polynomials of higher order. Ramanujan J. 11(3), 331-347 (2006) · Zbl 1146.11053 · doi:10.1007/s11139-006-8479-5
[21] Sills, A.V., Zeilberger, D.: Formulae for the number of partitions of \[n\] n into at most \[m\] m parts (using the quasi-polynomial ansatz). Adv. Appl. Math. 48(5), 640-645 (2012) · Zbl 1242.05020 · doi:10.1016/j.aam.2011.12.003
[22] Sylvester, J.J.: On the partition of numbers. Quarterly J. Pure Appl. Math. 1, 141-152 (1857)
[23] Sylvester, J.J.: On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order. Amer. J. Math. 5(1), 79-136 (1882) · JFM 14.0072.02 · doi:10.2307/2369536
[24] Wright, E.M.: Partitions into \[k\] k parts. Math. Annalen 142, 311-316 (1961) · Zbl 0100.27301 · doi:10.1007/BF01451024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.