×

The monotone cumulants. (English. French summary) Zbl 1273.46049

The axiomatic classification of natural products in noncommutative probability yields four types of independence: classical (also known as tensor), free, Boolean and monotone; other possibilities, such as Fermionic (i.e., \(\mathbb{Z}_2\)-graded) independence, may occur if an additional structure is available. Monotone independence is distinguished from the others by the noncommutativity of the corresponding natural product; consequently, the correct generalisation of classical notions to the monotone setting is not always clear.
In the work under review, the authors present a theory of generalised cumulants, which agrees with existing theories for classical, free and Boolean independence, but which also includes the monotone case. A family of maps \(\{ K_n : \mathcal{A} \to \mathbb{C} \}_{n \geqslant 1}\) on an algebraic probability space \(( \mathcal{A}, \phi )\) is a family of cumulants for a given type of independence if, for all \(X \in \mathcal{A}\) and \(n \geqslant 1\),
(K1’) \(K_n( X_1 + \cdots + X_N ) = N K_n( X )\) whenever \(X_1, \dots, X_N\) are independent and identically distributed copies of \(X\), i.e., \(\phi( X^k_i ) = \phi( X^k )\) for all \(k \geqslant 1\) and \(i = 1,\dots, N\);
(K2) \(K_n( \lambda X ) = \lambda^n K_n( X )\) for all \(\lambda > 0\);
(K3) \(\phi( X^n ) = K_n( X ) + Q_n\bigl( K_1( X ), \dots, K_{n - 1}( X ) \bigr)\) for some polynomial \(Q_n\) in \(n - 1\) noncommuting variables.
Note that the polynomial \(Q_n\) in (K3) is required to be universal, i.e., independent of \(X\). The axioms (K2) and (K3) are those of F. Lehner [Math. Z. 248, No. 1, 67–100 (2004; Zbl 1089.46040)]; axiom (K1’) is the appropriate substitute for Lehner’s additivity axiom, \[ K_n( X + Y ) = K_n( X ) + K_n( Y ) \quad \text{whenever \(X\) and \(Y\) are independent}, \] which does not make sense in the monotone setting.
The existence and uniqueness of monotone cumulants is established, and then used to give short proofs of monotone-independent versions of the central limit theorem and the law of small numbers.
The authors conclude with the proof of a combinatorial moment-cumulant formula, expressing moments as weighted sums of monotone cumulants over the set of monotone partitions (introduced by Muraki in his classification of quasi-universal products). The analogous formula holds for classical, free and Boolean independence, with monotone partitions replaced by linearly ordered partitions, linearly ordered non-crossing partitions and linearly ordered interval partitions, respectively.

MSC:

46L53 Noncommutative probability and statistics

Citations:

Zbl 1089.46040

References:

[1] A. C. R. Belton. A note on vacuum-adapted semimartingales and monotone independence. In Quantum Probability and Infinite Dimensional Analysis 105-114. QP-PQ: Quantum Probab. White Noise Anal. 18 . World Sci. Publ., Hackensack, NJ, 2005. · Zbl 0949.90051
[2] A. C. R. Belton. On the path structure of a semimartingale arising from monotone probability theory. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 258-279. · Zbl 1180.60037 · doi:10.1214/07-AIHP116
[3] A. Ben Ghorbal and M. Schürmann. Non-commutative notions of stochastic independence. Math. Proc. Comb. Phil. Soc. 133 (2002) 531-561. · Zbl 1028.46094 · doi:10.1017/S0305004102006072
[4] E. Di Nardo and D. Senato. Umbral nature of the Poisson random variables. In Algebraic Combinatorics and Computer Science: A Tribute to Gian-Carlo Rota 245-266. H. Crapo and D. Senato (Eds). Springer, Milan, 2001. · Zbl 0970.05012 · doi:10.1007/978-88-470-2107-5_11
[5] K. L. Chung. A Course in Probability Theory . Brace & World, Harcourt, 1968. · Zbl 0159.45701
[6] T. Hasebe and H. Saigo. Joint cumulants for natural independence. Available at . · Zbl 1247.46052
[7] F. Lehner. Cumulants in noncommutative probability theory I. Math. Z. 248 (2004) 67-100. · Zbl 1089.46040 · doi:10.1007/s00209-004-0653-0
[8] R. Lenczewski and R. Sałapata. Discrete interpolation between monotone probability and free probability. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (2006) 77-106. · Zbl 1139.46302 · doi:10.1142/S021902570600224X
[9] R. Lenczewski and R. Sałapata. Noncommutative Brownian motions associated with Kesten distributions and related Poisson processes. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2008) 351-375. · Zbl 1165.46032 · doi:10.1142/S0219025708003154
[10] N. Muraki. Monotonic convolution and monotonic Lévy-Hinčin formula. Preprint, 2000.
[11] N. Muraki. Monotonic independence, monotonic central limit theorem and monotonic law of small numbers. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 (2001) 39-58. · Zbl 1046.46049 · doi:10.1142/S0219025701000334
[12] N. Muraki. The five independences as quasi-universal products. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002) 113-134. · Zbl 1055.46514 · doi:10.1142/S0219025702000742
[13] N. Muraki. The five independences as natural products. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003) 337-371. · Zbl 1053.81057 · doi:10.1142/S0219025703001365
[14] N. Obata. Notions of independence in quantum probability and spectral analysis of graphs. Amer. Math. Soc. Trans. 223 (2008) 115-136. · Zbl 1170.46056
[15] G.-C. Rota and B. D. Taylor. The classical umbral calculus. SIAM J. Math. Anal. 25 (1994) 694-711. · Zbl 0797.05006 · doi:10.1137/S0036141093245616
[16] H. Saigo. A simple proof for monotone CLT. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13 (2010) 339-343. · Zbl 1204.46034 · doi:10.1142/S0219025710004073
[17] A. N. Shiryayev. Probability . Springer, New York, 1984. · Zbl 0536.60001
[18] R. Speicher. Multiplicative functions on the lattice of non-crossing partitions and free convolution. Math. Ann. 298 (1994) 611-628. · Zbl 0791.06010 · doi:10.1007/BF01459754
[19] R. Speicher. On universal products. In Free Probability Theory 257-266. D. Voiculescu (Ed.). Fields Inst. Commun. 12 . Amer. Math. Soc., Providence, RI, 1997. · Zbl 0877.46044
[20] R. Speicher and R. Woroudi. Boolean convolution. In Free Probability Theory 267-280. D. Voiculescu (Ed.). Fields Inst. Commun. 12 . Amer. Math. Soc., Providence, RI, 1997. · Zbl 0872.46033
[21] D. Voiculescu. Symmetries of some reduced free product algebras. In Operator Algebras and Their Connections With Topology and Ergodic Theory 556-588. Lect. Notes in Math. 1132 . Springer, Berlin, 1985. · Zbl 0618.46048 · doi:10.1007/BFb0074909
[22] D. Voiculescu. Addition of certain non-commutative random variables. J. Funct. Anal. 66 (1986) 323-346. · Zbl 0651.46063 · doi:10.1016/0022-1236(86)90062-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.