×

Symbolic solutions of some linear recurrences. (English) Zbl 1231.62004

Summary: A symbolic method for solving linear recurrences of combinatorial and statistical interest is introduced. This method essentially relies on a representation of polynomial sequences as moments of a symbol that looks as the framework of a random variable with no reference to any probability space. We give several examples of applications and state an explicit form for the class of linear recurrences involving Sheffer sequences satisfying a special initial condition. The results here presented can be easily implemented in a symbolic software.

MSC:

62A99 Foundational topics in statistics
68W30 Symbolic computation and algebraic computation

References:

[1] Di Bucchianico, A.; Soto y. Koelemeijer, G., Solving linear recurrences using functionals, (Crapo, H.; Senato, D., Algebraic Combinatorics and Computer Science (2001), Springer: Springer Milan, Italy), 461-472 · Zbl 0970.05013
[2] Di Nardo, E., A new approach to Sheppard’s corrections, Math. Methods Statist., 19, 2, 151-162 (2010) · Zbl 1282.62138
[3] Di Nardo, E.; Guarino, G.; Senato, D., A new method for fast computing unbiased estimators of cumulants, Statist. Comput., 19, 155-165 (2009)
[4] Di Nardo, E.; Niederhausen, H.; Senato, D., A symbolic handling of Sheffer polynomials, Ann. Mat. Pura Appl., 190, 3, 489-506 (2011) · Zbl 1292.05052
[5] Di Nardo, E.; Senato, D., An umbral setting for cumulants and factorial moments, Eur. J. Combin., 27, 3, 394-413 (2006) · Zbl 1085.05018
[6] Narayana, T. V., Lattice Path Combinatorics with Statistical Applications (1979), University of Toronto Press: University of Toronto Press Toronto, Ontario, Canada · Zbl 0437.05001
[7] Niederhausen, H., Sheffer polynomials and linear recurrences, Congr. Numer., 29, 689-698 (1980) · Zbl 0458.05007
[8] Niederhausen, H., Sheffer polynomials for computing exact Kolmogorov-Smirnov and Rényi type distributions, Ann. Statist., 9, 923-944 (1981) · Zbl 0494.62019
[9] Niederhausen, H., A formula for explicit solutions of certain linear recursions on polynomial sequences, Congr. Numer., 49, 87-98 (1985) · Zbl 0648.05005
[10] Niederhausen, H., Recursive initial value problems for Sheffer sequences, Discrete Math., 204, 319-327 (1999) · Zbl 0944.05004
[11] Niederhausen, H., 2010. Finite Operator Calculus With Applications to Linear Recursions. www.math.fau.edu/Niederhausen; Niederhausen, H., 2010. Finite Operator Calculus With Applications to Linear Recursions. www.math.fau.edu/Niederhausen
[12] Niederhausen, H.; Sullivan, S., Pattern avoiding ballot paths and finite operator calculus, J. Statist. Plann. Inference, 140, 2312-2320 (2010) · Zbl 1278.05019
[13] Razpet, M., An application of the umbral calculus, J. Math. Anal. Appl., 149, 1-16 (1990) · Zbl 0727.39004
[14] Riordan, J., An Introduction to Combinatorial Analysis (1958), John Wiley and Sons, Inc.: John Wiley and Sons, Inc. New York · Zbl 0078.00805
[15] Roman, S. M.; Rota, G.-C., The umbral calculus, Adv. in Math., 27, 95-188 (1978) · Zbl 0375.05007
[16] Rota, G.-C.; Taylor, B. D., The classical umbral calculus, SIAM J. Math. Anal., 25, 2, 694-711 (1994) · Zbl 0797.05006
[17] Sapounakis, A.; Tasoulas, I.; Tsikouras, P., Counting strings in Dyck paths, Discrete Math., 307, 2909-2924 (2007) · Zbl 1127.05005
[18] Taylor, B. D., Difference equations via the classical umbral calculus, (Mathematical Essays in Honor of Gian-Carlo Rota. (1998), Birkhauser: Birkhauser Boston), 397-411 · Zbl 0903.05007
[19] Wang, W.; Wang, T., Identities on bell polynomials and Sheffer sequences, Discrete Math., 309, 1637-1648 (2009) · Zbl 1221.05018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.