×

Curious congruences related to the Bell polynomials. (English) Zbl 1415.11042

This paper studies some famous classes of polynomials that can be defined via classical combinatorial objects. The main results of the paper are congruences that these polynomials satisfy modulo a prime \(p\). For example, define the \(r\)-derangement polynomials \(\mathcal{D}_{n,r}(x)\) by \(\mathcal{D}_{n,r}(x)=\frac{1}{r!}\sum_{j=0}^n{\binom{n}{j}}(j+r)!(x-1)^{n-j}\). The authors show that \[ \mathcal{D}_{mp+q,r-1}(1-x)\equiv(-x)^{mp}\mathcal{D}_{q,r-1}(1-x)\pmod p. \] As another example, consider the \(n^{\text{th}}\) Lah polynomial \(\mathcal{L}_n(x)=\sum_{k=0}^nL(n,k)(x)_k\), where \(L(n,k)\) is the number of partitions of the set \([n]\) into \(k\) ordered lists and \[ (\alpha)_r=\alpha(\alpha-1)\cdots(\alpha-r+1). \] The authors show that \[ (-x)^{m+n-2}\sum_{k=0}^{p-1}(-m)_{p-1-k}\mathcal{L}_{n+k}(x)\equiv x^{p-1}\sum_{j=0}^n(-1)^jL(n,j)\mathcal{D}_{j+m+n-2}(1-x)\pmod p. \] The paper extends further, giving congruences involving the so-called \((r_1,\ldots,r_q)\)-Bell polynomials.

MSC:

11B73 Bell and Stirling numbers
05A18 Partitions of sets
11A07 Congruences; primitive roots; residue systems
Full Text: DOI

References:

[1] Broder, A. Z., The r-Stirling numbers, Discrete Math., 49, 241-259 (1984) · Zbl 0535.05006 · doi:10.1016/0012-365X(84)90161-4
[2] Comtet, L., Advanced combinatorics (1974), D. Reidel Publishing Co.: D. Reidel Publishing Co., Dordrecht · Zbl 0283.05001
[3] Di Crescenzo, A.; Rota, G. C., Sul calcolo umbrale, Ricerche di Matematica, 43, 129-162 (1994) · Zbl 0918.05010
[4] Eriksen, N.; Freij, R.; Wästlund, J., Enumeration of derangements with descents in prescribed positions, Electron. J. Combin., 16 (2009) · Zbl 1181.05003
[5] Gertsch, A.; Robert, A. M., Some congruences concerning the Bell numbers, Bull. Belg. Math. Soc. Simon Stevin, 3, 467-475 (1996) · Zbl 0869.11017
[6] Gessel, I. M., Applications of the classical umbral calculus, Algebra Universalis, 49, 397-434 (2003) · Zbl 1092.05005 · doi:10.1007/s00012-003-1813-5
[7] Maamra, M. S.; Mihoubi, M., Note on some restricted Stirling numbers of the second kind, C.R. Acad. Sci. Paris, Ser.I, 354, 231-234 (2016) · Zbl 1387.05120 · doi:10.1016/j.crma.2015.12.003
[8] Maamra, M. S.; Mihoubi, M., The \(( r_1\), . . . , \(r_p\))-Bell polynomials, Integers, 14 (2014) · Zbl 1308.11027
[9] Mező, I.; Ramírez, J. L., Divisibility properties of the r-Bell numbers and polynomials, J. Num. Theory., 177, 136-152 (2017) · Zbl 1428.11052 · doi:10.1016/j.jnt.2017.01.022
[10] Mihoubi, M., Bell polynomials and binomial type sequences, Discrete Math., 308, 2450-2459 (2008) · Zbl 1147.05006 · doi:10.1016/j.disc.2007.05.010
[11] Mihoubi, M.; Maamra, M. S., The \(( r_1\), . . . , \(r_p\))-Stirling numbers of the second kind, Integers, 12 (2012) · Zbl 1310.11031 · doi:10.1515/integers-2012-0022
[12] Mihoubi, M.; Rahmani, M., The r-Bell polynomials, Afr. Mat. (2017) · Zbl 1387.05018
[13] Roman, S., The Umbral Calculus (1984), Academic Press: Academic Press, Orlando, FL · Zbl 0536.33001
[14] Roman, S.; Rota, G. C., The umbral calculus, Adv. Math., 27, 95-188 (1978) · Zbl 0375.05007 · doi:10.1016/0001-8708(78)90087-7
[15] Rota, G. C.; Taylor, B. D., The classical umbral calculus, SIAM J. Math. Anal., 25, 694-711 (1994) · Zbl 0797.05006 · doi:10.1137/S0036141093245616
[16] Sun, Y.; Wu, X., The largest singletons of set partitions, European J. Combin., 32, 369-382 (2011) · Zbl 1290.05020 · doi:10.1016/j.ejc.2010.10.011
[17] Sun, Y.; Wu, X.; Zhuang, J., Congruences on the Bell polynomials and the derangement polynomials, J. Num. Theory, 133, 1564-1571 (2013) · Zbl 1339.11035 · doi:10.1016/j.jnt.2012.08.031
[18] Sun, Z.-W.; Zagier, D., On a curious property of Bell numbers, Bull. Aust. Math. Soc., 84, 153-158 (2011) · Zbl 1257.11024
[19] Sun, Y.; Zhuang, J., λ-factorials of n, Electron. J. Combin (2010) · Zbl 1204.05008
[20] Wang, C.; Miska, P.; Mező, I., The r-derangement numbers, Discrete Math., 340, 7, 1681-1692 (2017) · Zbl 1415.05007 · doi:10.1016/j.disc.2016.10.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.