×

A symbolic treatment of Riordan arrays. (English) Zbl 1282.05013

Summary: We approach Riordan arrays and their generalizations via umbral symbolic methods. This new approach allows us to derive fundamental aspects of the theory of Riordan arrays as immediate consequences of the umbral version of the classical Abel’s identity for polynomials. In particular, we obtain a novel non-recursive formula for Riordan arrays and derive, from this new formula, some known recurrences and a new recurrence relation for Riordan arrays.

MSC:

05A15 Exact enumeration problems, generating functions
05A19 Combinatorial identities, bijective combinatorics
05A40 Umbral calculus

Software:

Maple

References:

[2] Barnabei, M.; Brini, A.; Nicoletti, G., Recursive matrices and umbral calculus, J. Algebra, 75, 546-573 (1982) · Zbl 0509.05005
[3] Barnabei, M.; Brini, A.; Nicoletti, G., A general umbral calculus in infinitely many variables, Adv. Math., 50, 1, 49-93 (1983) · Zbl 0529.05003
[4] Barnabei, M.; Montefusco, L. B., Circulant recursive matrices, (Crapo, H.; Senato, D., Algebraic Combinatorics and Computer Science (2001), Springer: Springer Italy), 111-127 · Zbl 0967.15015
[5] Chen, W.; Li, N.; Shapiro, L.; Yan, S., Matrix identities on weighted partial Motzkin paths, European J. Combin., 28, 4, 1196-1207 (2007) · Zbl 1113.05005
[6] Comtet, L., Advanced Combinatorics: The Art of Finite and Infinite Expansions (1974), Riedel: Riedel Dordrecht · Zbl 0283.05001
[7] di Nardo, E.; Niederhausen, H.; Senato, D., A symbolic handling of Sheffer polynomials, Ann. Mat. Pura Appl., 190, 3, 489-506 (2011) · Zbl 1292.05052
[8] di Nardo, E.; Petrullo, P.; Senato, D., Cumulants and convolutions via Abel polynomials, European J. Combin., 31, 7, 1792-1804 (2010) · Zbl 1230.05273
[9] di Nardo, E.; Senato, D., Umbral nature of the Poisson random variables, (Crapo, H.; Senato, D., Algebraic Combinatorics and Computer Science (2001), Springer: Springer Italy), 245-266 · Zbl 0970.05012
[10] di Nardo, E.; Senato, D., An umbral setting for cumulants and factorial moments, European J. Combin., 27, 394-413 (2006) · Zbl 1085.05018
[11] Gessel, I. M., Applications of the classical umbral calculus, Algebra Universalis, 49, 397-434 (2003) · Zbl 1092.05005
[12] He, T.-X.; Hsu, L. C.; Shiue, P. J.-S., The Sheffer group and the Riordan group, Discrete Appl. Math., 155, 15, 1895-1909 (2007) · Zbl 1123.05007
[13] Luzón, A.; Merlini, D.; Morón, M. A.; Sprugnoli, R., Identities induced by Riordan arrays, Linear Algebra Appl., 436, 3, 631-647 (2012) · Zbl 1232.05011
[14] Luzón, A.; Morón, M. A., Recurrence relations for polynomial sequences via Riordan matrices, Linear Algebra Appl., 433, 7, 1422-1446 (2010) · Zbl 1250.11029
[15] Merlini, D., Proper generating trees and their internal path length, Discrete Appl. Math., 156, 5, 627-646 (2008) · Zbl 1136.05002
[16] Merlini, D.; Rogers, D. G.; Sprugnoli, R.; Verri, M. C., On some alternative characterizations of Riordan arrays, Canad. J. Math., 49, 2, 301-320 (1997) · Zbl 0886.05013
[17] Merlini, D.; Sprugnoli, R., The relevant prefixes of coloured Motzkin walks: An average case analysis, Theoret. Comput. Sci., 411, 1, 148-163 (2010) · Zbl 1189.68181
[18] Merlini, D.; Sprugnoli, R., Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern, Theoret. Comput. Sci., 412, 27, 2988-3001 (2011) · Zbl 1220.68079
[19] Merlini, D.; Sprugnoli, R.; Verri, M. C., The Cauchy numbers, Discrete Math., 306, 1906-1920 (2006) · Zbl 1098.05008
[20] Nardo, E. D.; Guarino, G.; Senato, D., A unifying framework for k-statistics, polykays and their multivariate generalizations, Bernoulli, 14, 2, 440-468 (2008) · Zbl 1274.62358
[21] Nardo, E. D.; Guarino, G.; Senato, D., A new method for fast computing unbiased estimators of cumulants (Maple algorithms), Stat. Comput., 19, 155-165 (2009)
[23] Petrullo, P., A symbolic approach to cumulants with connections to Abel polynomials, Parking functions and Kerov polynomials (2010), Ph.D. Thesis
[24] Petrullo, P., Outcomes of the Abel identity, Mediterr. J. Math. (2013), in press · Zbl 1269.05012
[25] Petrullo, P.; Senato, D., An instance of umbral methods in representation theory: The parking function module, Pure Math. Appl., 19, 2-3, 105-116 (2008) · Zbl 1224.05032
[26] Rogers, D. G., Pascal triangles, Catalan numbers and Renewal arrays, Discrete Math., 22, 301-310 (1978) · Zbl 0398.05007
[27] Roman, S., The Umbral Calculus (1984), Academic Press · Zbl 0536.33001
[28] Rota, G.-C.; Shen, J., On the combinatorics of cumulants, J. Combin. Theory Ser. A, 91, 283-304 (2000) · Zbl 0978.05006
[29] Rota, G.-C.; Shen, J.; Taylor, B., All polynomials of binomial type are represented by Abel polynomials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 25, 3-4, 731-738 (1997) · Zbl 1003.05011
[30] Rota, G.-C.; Taylor, B., The classical umbral calculus, SIAM J. Math. Anal., 25, 694-711 (1994) · Zbl 0797.05006
[31] Shapiro, L. W., Bijections and the Riordan group, Theoret. Comput. Sci., 307, 2, 403-413 (2003) · Zbl 1048.05008
[32] Shapiro, L. W.; Getu, S.; Woan, W.-J.; Woodson, L. C., The Riordan group, Discrete Appl. Math., 34, 1-3, 229-239 (1991) · Zbl 0754.05010
[33] Sprugnoli, R., Riordan arrays and combinatorial sums, Discrete Math., 132, 267-290 (1994) · Zbl 0814.05003
[34] Sprugnoli, R., Riordan arrays and the Abel-Gould identity, Discrete Math., 142, 213-233 (1995) · Zbl 0832.05007
[35] Sprugnoli, R., A bibliography on Riordan arrays (2008)
[36] Stanley, R., A survey of alternating permutations, Contemp. Math., 531, 165-196 (2010) · Zbl 1231.05288
[37] Taylor, B., Umbral presentations for polynomial sequences, Comput. Math. Appl., 41, 1085-1098 (2001) · Zbl 0982.05017
[38] Wang, W.; Wang, T., Generalized Riordan arrays, Discrete Math., 308, 6466-6500 (2008) · Zbl 1158.05008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.