×

Strongly \(\lambda \)-statistically and strongly Vallée-Poussin pre-Cauchy sequences in probabilistic metric spaces. (English) Zbl 1509.54009

Let \(\lambda\) be a non-decreasing sequence of positive real numbers going to \(\infty\) with \(\lambda_1=1\) and \(\lambda_{n+1}\le\lambda_n+1\). A sequence \((x_n)\) in a PM space \((P,\mathcal{F},\tau)\) [B. Schweizer and A. Sklar, Probabilistic metric spaces. New York-Amsterdam-Oxford: North-Holland (1983; Zbl 0546.60010)] is said to be strongly \(\lambda\)-statistically convergent to \(l\in P\) if, for every \(t>0\), \[ \lim_{n\to\infty}\frac{1}{\lambda_n} |\{k\in [n-\lambda_n+1,n]:F_{x_kl}(t)\le 1-t\}|=0\,. \] An analogous definition of strongly \(\lambda\)-statistical pre-Cauchy sequence is given.
The sequence \((x_k)\) is said to be de la Vallée-Poussin pre-Cauchy if for every \(\varepsilon>0\) there is \(n_0\) such that for every \(n\ge n_0\), \[ \frac{1}{\lambda_n^2}\,\sum_{j,k\in [n-\lambda_n+1,n]} d_L(F_{x_j,x_k},\varepsilon_0)\le\varepsilon. \] Here \(d_L\) is the modified Lévy distance. The relationships between the various concepts are studied.
(Throughout the paper the names de la Vallée-Poussin and Cesàro are misspelled).

MSC:

54E70 Probabilistic metric spaces
40B05 Multiple sequences and series

Citations:

Zbl 0546.60010
Full Text: DOI

References:

[1] J. Connor, J. Fridy and J. Kline, Statistically pre-Cauchy Sequences, Analysis, 14 (1994), 311-317. · Zbl 0810.40001
[2] J. Connor, J. 1992. R-type summability methods, Cauchy criteria, P-sets and Statistical convergence, · Zbl 0765.40002
[3] Proc. Amer. Math. Soc., 115 (1992), 319-327. · Zbl 0765.40002
[4] J. Connor, The statistical and strong P-Cesaro convergence of sequences, Analysis, 8 (1988), 47-63. · Zbl 0653.40001
[5] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. · Zbl 0044.33605
[6] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313. · Zbl 0588.40001
[7] P. Malik and S. Das, On strong λ-statistical convergence of sequences in probabilistic metric (pm) spaces, arXiv preprint arXiv:2007.09173, 2020.
[8] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci., 28 (1942), 535-537. · Zbl 0063.03886
[9] M. Mursaleen, λ-statistical convergence, Mathematica Slovaca, 50 (2000), no. 1, 111-115. · Zbl 0953.40002
[10] T. S´alat, On statistically convergent sequences of real numbers, Mathematica Slovaca, 30 (1980), 139-150. · Zbl 0437.40003
[11] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375. · Zbl 0089.04002
[12] C. S¸en¸cimen and S. Pehlivan, Strong statistical convergence in probabilistic metric space, Stoch. Anal. Appl., 26 (2008), 651-664. · Zbl 1147.54015
[13] B. Schweizer, and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 314-334. · Zbl 0091.29801
[14] B. Schweizer, and A. Sklar and E. Thorp, The metrization of statistical metric spaces, Pacific J. Math., 10 (1960), 673-675. · Zbl 0096.33203
[15] B. Schweizer, and A. Sklar, Probabilistic Metric Spaces, North Holland: New York, Amsterdam, Oxford, 1983. · Zbl 0546.60010
[16] R. M. Tardiff, Topologies for Probabilistic Metric spaces, Pacific J. Math., 65 (1976), 233-251. · Zbl 0337.54004
[17] E. Thorp, Generalized topologies for statistical metric spaces, Fundamenta Mathematicae, 51 (1962), 9-21. · Zbl 0105.11501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.