×

Monitoring foreclosure rates with a spatially risk-adjusted Bernoulli CUSUM chart for concurrent observations. (English) Zbl 1516.62376

Summary: Frequently in process monitoring, situations arise in which the order that events occur cannot be distinguished, motivating the need to accommodate multiple observations occurring at the same time, or concurrent observations. The risk-adjusted Bernoulli cumulative sum (CUSUM) control chart can be used to monitor the rate of an adverse event by fitting a risk-adjustment model, followed by a likelihood ratio-based scoring method that produces a statistic that can be monitored. In our paper, we develop a risk-adjusted Bernoulli CUSUM control chart for concurrent observations. Furthermore, we adopt a novel approach that uses a combined mixture model and kernel density estimation approach in order to perform risk-adjustment with regard to spatial location. Our proposed method allows for monitoring binary outcomes through time with multiple observations at each time point, where the chart is spatially adjusted for each Bernoulli observation’s estimated probability of the adverse event. A simulation study is presented to assess the performance of the proposed monitoring scheme. We apply our method using data from Wayne County, Michigan between 2005 and 2014 to monitor the rate of foreclosure as a percentage of all housing transactions.

MSC:

62-XX Statistics
Full Text: DOI

References:

[1] D.J. Bezemer, Understanding financial crisis through accounting models, Account. Organ. Soc. 35 (2010), pp. 676-688. · doi:10.1016/j.aos.2010.07.002
[2] J.Y. Campbell and J.F. Cocco, A model of mortgage default, Tech. rep., National Bureau of Economic Research, 2011.
[3] B. Christophers, Complexity, finance, and progress in human geography, Prog. Hum. Geogr. 33 (2009), pp. 807-824. · doi:10.1177/0309132509336508
[4] B.A. Ciochetti, Y. Deng, G. Lee, J.D. Shilling, and R. Yao, A proportional hazards model of commercial mortgage default with originator bias, J. Real Estate Financ. Econ. 27 (2003), pp. 5-23. · doi:10.1023/A:1023694912018
[5] J.M. Clapp, Y. Deng, and X. An, Unobserved heterogeneity in models of competing mortgage termination risks, Real Estate Econ. 34 (2006), pp. 243-273. · doi:10.1111/j.1540-6229.2006.00166.x
[6] D. Cook, M. Coory, and R. Webster, Exponentially weighted moving average charts to compare observed and expected values for monitoring risk-adjusted hospital indicators, BMJ Qual. Safety 20 (2011), pp. 469-474. · doi:10.1136/bmjqs.2008.031831
[7] D.A. Cook, S.H. Steiner, R.J. Cook, V.T. Farewell, and A.P. Morton, Monitoring the evolutionary process of quality: Risk-adjusted charting to track outcomes in intensive care, Crit. Care Med. 31 (2003), pp. 1676-1682. · doi:10.1097/01.CCM.0000065273.63224.A8
[8] Y. Deng, J.M. Quigley, and R. Order, Mortgage terminations, heterogeneity and the exercise of mortgage options, Econometrica 68 (2000), pp. 275-307. · doi:10.1111/1468-0262.00110
[9] M. Dewar, E. Seymour, and O. Druă, Disinvesting in the city: The role of tax foreclosure in Detroit, Urban Aff. Rev. 51 (2015), pp. 587-615.
[10] O. Grigg and V. Farewell, An overview of risk-adjusted charts, J. Roy. Stat. Soc. Ser. A 167 (2004), pp. 523-539. · doi:10.1111/j.1467-985X.2004.0apm2.x
[11] O. Grigg and D. Spiegelhalter, A simple risk-adjusted exponentially weighted moving average, J. Amer. Statist. Assoc. 102 (2007), pp. 140-152. · Zbl 1284.62653
[12] D. Immergluck, From the subprime to the exotic: Excessive mortgage market risk and foreclosures, J. Amer. Plann. Assoc. 74 (2008), pp. 59-76.
[13] L.A. Jones-Farmer, W.H. Woodall, S.H. Steiner, and C.W. Champ, An overview of phase I analysis for process improvement and monitoring, J. Qual. Technol. 46 (2014), pp. 265-282.
[14] J.E. Kelsall and P.J. Diggle, Spatial variation in risk of disease: A nonparametric binary regression approach, J. Roy. Statist. Soc. Ser. C 47 (1998), pp. 559-573. · Zbl 0935.62122 · doi:10.1111/1467-9876.00128
[15] J. Lovegrove, O. Valencia, T. Treasure, C. Sherlaw-Johnson, and S. Gallivan, Monitoring the results of cardiac surgery by variable life-adjusted display, Lancet 350 (1997), pp. 1128-1130. · doi:10.1016/S0140-6736(97)06507-0
[16] J. Lovegrove, C. Sherlaw-Johnson, O. Valencia, T. Treasure, and S. Gallivan, Monitoring the performance of cardiac surgeons, J. Oper. Res. Soc. 50 (1999), pp. 684-689. · Zbl 1054.90600
[17] R. Martin, The local geographies of the financial crisis: From the housing bubble to economic recession and beyond, J. Econ. Geogr. 11 (2011), pp. 587-618. · doi:10.1093/jeg/lbq024
[18] G. McLachlan and D. Peel, Finite Mixture Models, John Wiley & Sons, New York, 2004. · Zbl 1140.92010 · doi:10.1002/047172842X
[19] E. Page, Continuous inspection schemes, Biometrika 41 (1954), pp. 100-115. · Zbl 0056.38002 · doi:10.1093/biomet/41.1-2.100
[20] A. Pennington-Cross, The duration of foreclosures in the subprime mortgage market: A competing risks model with mixing, J. Real Estate Finance Econ. 40 (2010), pp. 109-129. · doi:10.1007/s11146-008-9124-4
[21] J. Poloniecki, O. Valencia, and P. Littlejohns, Cumulative risk adjusted mortality chart for detecting changes in death rate: Observational study of heart surgery, BMJ 316 (1998), pp. 1697-1700. · doi:10.1136/bmj.316.7146.1697
[22] R.G. Quercia and M.A. Stegman, Residential mortgage default: A review of the literature, J. Housing Res. 3 (1992), pp. 341-379.
[23] M.R. Reynolds Jr. and Z.G. Stoumbos, A CUSUM chart for monitoring a proportion when inspecting continuously, J. Qual. Technol. 31 (1999), pp. 37-108.
[24] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, Ann. Math. Statist. 27 (1956), pp. 832-837. · Zbl 0073.14602 · doi:10.1214/aoms/1177728190
[25] A. Schuh, W.H. Woodall, and J.A. Camelio, The effect of aggregating data when monitoring a Poisson process, J. Qual. Technol. 45 (2013), pp. 260-272.
[26] E.S. Schwartz and W.N. Torous, Mortgage prepayment and default decisions: A Poisson regression approach, Real Estate Econ. 21 (1993), pp. 431-449. · doi:10.1111/1540-6229.00619
[27] L.H. Sego, M.R. Reynolds Jr., and W.H. Woodall, Risk-adjusted monitoring of survival times, Stat. Med. 28 (2009), pp. 1386-1401. · doi:10.1002/sim.3546
[28] D. Spiegelhalter, O. Grigg, R. Kinsman, and T. Treasure, Risk-adjusted sequential probability ratio tests: Applications to Bristol, Shipman and adult cardiac surgery, Int. J. Qual. Health Care 15 (2003), pp. 7-13. · doi:10.1093/intqhc/15.1.7
[29] S.H. Steiner and M. Jones, Risk-adjusted survival time monitoring with an updating exponentially weighted moving average (EWMA) control chart, Stat. Med. 29 (2010), pp. 444-454. · doi:10.1002/sim.3788
[30] S.H. Steiner, R.J. Cook, V.T. Farewell, and T. Treasure, Monitoring surgical performance using risk-adjusted cumulative sum charts, Biostatistics 1 (2000), pp. 441-452. · Zbl 1089.62533 · doi:10.1093/biostatistics/1.4.441
[31] X. Tang, F.F. Gan, and L. Zhang, Risk-adjusted cumulative sum charting procedure based on multiresponses, J. Amer. Statist. Assoc. 110 (2015), pp. 16-26. · Zbl 1373.62587
[32] W. Tian, H. Sun, X. Zhang, and W.H. Woodall, The impact of varying patient populations on the in-control performance of the risk-adjusted CUSUM chart, Int. J. Qual. Health Care 27 (2015), pp. 31-36. · doi:10.1093/intqhc/mzu092
[33] W.H. Woodall, S.L. Fogel, and S.H. Steiner, The monitoring and improvement of surgical-outcome quality, J. Qual. Technol. 47 (2015), pp. 383-399.
[34] X. Zhang and W.H. Woodall, Dynamic probability control limits for risk-adjusted Bernoulli CUSUM charts, Stat. Med. 34 (2015), pp. 3336-3348. · doi:10.1002/sim.6547
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.