×

Phase I risk-adjusted control charts for surgical data with ordinal outcomes. (English) Zbl 1508.62296

Summary: In recent years, risk-adjusted control charts that account for the preoperative risk of patients have been widely used for monitoring of surgical outcomes. Generally, risk-adjusted control charts have been developed on the basis of a binary classification of surgical outcomes. However, for a patient who survives an operation, it is reasonable to consider different grades of recovery in an ordinal manner. On the other hand, Phase I monitoring of risk-adjusted control charts has been neglected. Hence, in this paper, a general Phase I risk-adjusted control chart is proposed to monitor ordinal outcomes of surgical outcomes. The proposed risk-adjusted model is developed on the basis of proportional odds logistic regression models. The application of the proposed model is illustrated by analyzing the data in a case study and its performance is evaluated using a Monte Carlo simulation study.

MSC:

62P30 Applications of statistics in engineering and industry; control charts
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

ordinal
Full Text: DOI

References:

[1] Agresti, A. 1989. Tutorial on modeling ordered categorical response data. Psychological bulletin 105 (2):290. https://doi.org/10.1037/0033-2909.105.2.290 · doi:10.1037/0033-2909.105.2.290
[2] Agresti, A. 2010. Analysis of ordinal categorical data. John Wiley & Sons 656:118-22. · Zbl 1263.62007
[3] Asadayyoobi, N., and S. T. A. Niaki. 2016. Monitoring patient survival times in surgical systems using a risk-adjusted AFT regression chart. Quality Technology and Quantitative Management 14 (2):1-12.
[4] Biswas, P., and J. D. Kalbfleisch. 2008. A risk-adjusted CUSUM in continuous time based on the Cox model. Statistics in Medicine 27 (17):3382-406. https://doi.org/10.1002/sim.3216 · doi:10.1002/sim.3216
[5] Christensen, R. H. B. 2011. Analysis of ordinal data with cumulative link models—estimation with the ordinal package. R-package version 13:9-13.
[6] Cook, D. A., S. H. Steiner, V. T. Farewell, and A. P. Morton. 2003. Monitoring the evolutionary process risk adjusted charting to track outcomes in intensive care. Critical Care Medicine 31: 1676-82. https://doi.org/10.1097/01.CCM.0000065273.63224.A8 · doi:10.1097/01.CCM.0000065273.63224.A8
[7] Gandy, A., J. T. Kvaløy, A. Bottle, and F. Zhou. 2010. Risk-adjusted monitoring of time to event. Biometrika 97 (2):375-88. https://doi.org/10.1093/biomet/asq004 · Zbl 1205.62167 · doi:10.1093/biomet/asq004
[8] Grigg, O. A., and V. T. Farewell. 2004. A risk-adjusted Sets method for monitoring adverse medical outcomes. Statistics in Medicine 23 (10):593-1602. https://doi.org/10.1002/sim.1763 · doi:10.1002/sim.1763
[9] Grigg, O., and D. Spiegelhalter. 2007. A simple risk-adjusted exponentially weighted moving average. Journal of the American Statistical Association 102 (477):140-52. https://doi.org/10.1198/016214506000001121 · Zbl 1284.62653
[10] Jones-Farmer, L. A., W. H. Woodall, S. H. Steiner, and C. W. Champ. 2014. An overview of Phase I analysis for process improvement and monitoring. Journal of Quality Technology 46 (3):265-80.
[11] Lovegrove, J., O. Valencia, T. Treasure, C. Sherlaw-Johnson, and S. Gallivan. 1997. Monitoring the results of cardiac surgery by variable lifeadjusted display. Lancet 350:1128-30. https://doi.org/10.1016/S0140-6736(97)06507-0 · doi:10.1016/S0140-6736(97)06507-0
[12] Mohammadian, F., S. T. A. Niaki, and A. Amiri. 2014. Phase-I risk-adjusted geometric control charts to monitor health-care systems. Quality and Reliability Engineering International 32 (1):19-28. https://doi.org/10.1002/qre.1722 · doi:10.1002/qre.1722
[13] Myers, R. H., D. C. Montgomery, G. G. Vining, and T. J. Robinson. 2012. Generalized linear models: With applications in engineering and the sciences. John Wiley & Sons 791:169-76.
[14] Parsonnet, V., D. Dean, and A. D. Bernstein. 1989. A method of uniform stratification of risk for evaluating the results of surgery in acquired adult heart disease. Circulation 79 (6):I3-12.
[15] Paynabar, K., and A. B. Yeh. 2012. Phase I risk-adjusted control charts for monitoring surgical performance by considering categorical covariates. Journal of Quality Technology 44 (1):39.
[16] Ryan, A. G., L. J. Wells, and W. H. Woodall. 2011. Methods for monitoring multiple proportions when inspecting continuously. Journal of Quality Technology 43:237-48.
[17] Sego, L. H., M. R. Reynolds, and W. H. Woodall. 2009. Risk-adjusted monitoring of survival times. Statistics in medicine 28 (9):1386-401. https://doi.org/10.1002/sim.3546 · doi:10.1002/sim.3546
[18] Shortell, S. M., R. H. Jones, A. W. Rademaker, R. R. Gillies, D. S. Dranove, E. F. Hughes, P. P. Budetti, K. S. Reynolds, and C. F. Huang. 2000. Assessing the impact of total quality management and organizational culture on multiple outcomes of care for coronary artery bypass graft surgery patients. Medical care 38 (2):207-17. https://doi.org/10.1097/00005650-200002000-00010 · doi:10.1097/00005650-200002000-00010
[19] Spiegelhalter, D., O. Grigg, R. Kinsman, and T. O. M. Treasure. 2003. Risk-adjusted sequential probability ratio tests: Applications to Bristol, Shipman and adult cardiac surgery. International Journal for Quality in Health Care 15 (1):7-13. https://doi.org/10.1093/intqhc/15.1.7 · doi:10.1093/intqhc/15.1.7
[20] Steiner, S. H. 2014. Risk-adjusted monitoring of outcomes in health care. Statistics in Action: A Canadian Outlook 14:225-41.
[21] Steiner, S. H., and M. Jones. 2010. Risk-adjusted survival time monitoring with an updating exponentially weighted moving average (EWMA) control chart. Statistics in Medicine 29 (4):444-54. https://doi.org/10.1002/sim.3788 · doi:10.1002/sim.3788
[22] Steiner, S. H., R. J. Cook, V. T. Farewell, and T. Treasure. 2000. Monitoring surgical performance using risk-adjusted cumulative sum charts. Biostatistics 1 (4):441-52. https://doi.org/10.1093/biostatistics/1.4.441 · Zbl 1089.62533 · doi:10.1093/biostatistics/1.4.441
[23] Tang, X., F. F. Gan, and L. Zhang. 2015. Risk-adjusted cumulative sum charting procedure based on multiresponses. Journal of the American Statistical Association 110 (509):16-26. https://doi.org/10.1080/01621459.2014.960965 · Zbl 1373.62587
[24] Vittinghoff, E., D. V. Glidden, S. C. Shiboski, and C. E. McCulloch. 2011. Regression methods in biostatistics: Linear, logistic, survival, and repeated measures models. Springer Science & Business Media 2012, 2d Edittion, Pages 190-199. doi: 10.1007/978-1-4614-1353-0 · Zbl 1320.92009 · doi:10.1007/978-1-4614-1353-0
[25] Woodall, W. H., S. L. Fogel, and S. H. Steiner. 2015. The monitoring and improvement of surgical-outcome quality. Journal of Quality Technology 47 (4):383-99.
[26] Zhang, X., J. B. Loda, and W. H. Woodall. 2017. Dynamic probability control limits for risk-adjusted CUSUM charts based on multiresponses. Statistics in Medicine 36 (16):2547-58. https://doi.org/10.1002/sim.7312 · doi:10.1002/sim.7312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.