×

Epidemic outbreak for an SIS model in multiplex networks with immunization. (English) Zbl 1358.92099

Summary: With the aim of understanding epidemic spreading in a general multiplex network and designing optimal immunization strategies, a mathematical model based on multiple degree is built to analyze the threshold condition for epidemic outbreak. Two kinds of strategies, the multiplex node-based immunization and the layer node-based immunization, are examined. Theoretical results show that the general framework proposed here can illustrate the effect of diverse correlations and immunizations on the outbreak condition in multiplex networks. Under a set of conditions on uncorrelated coefficients, the specific epidemic thresholds are shown to be only dependent on the respective degree distribution in each layer.

MSC:

92D30 Epidemiology
91D30 Social networks; opinion dynamics

References:

[1] Salehi, M.; Siyari, P.; Magnani, M., Multidimensional epidemic thresholds in diffusion processes over interdependent networks, Chaos Solitons Fractals, 72, 59-67 (2015) · Zbl 1352.90022
[2] Min, Y.; Hu, J.; Wang, W., Diversity of multilayer networks and its impact on collaborating epidemics, Phys. Rev. E, 90, 6, 062803 (2014)
[3] Vespignani, A., Complex networks: the fragility of interdependency, Nature, 464, 7291, 984-985 (2010)
[4] Boccaletti, S.; Bianconi, G.; Criado, R., The structure and dynamics of multilayer networks, Phys. Rep., 544, 1, 1-122 (2014)
[5] Dickison, M.; Havlin, S.; Stanley, H. E., Epidemics on interconnected networks, Phys. Rev. E, 85, 066109 (2012)
[6] Saumell-Mendiola, A.; Serrano, M.; Boguna, M., Epidemic spreading on interconnected networks, Phys. Rev. E, 86, 026106 (2012)
[7] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 3200 (2001)
[8] Zhu, G. H.; Fu, X. C.; Tang, Q., Mean-field modeling approach for understanding epidemic dynamics in interconnected networks, Chaos Solitons Fractals, 80, 117-124 (2015) · Zbl 1354.05126
[9] van den Driessche, P.; Watmough, J., Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
[10] Lee, K. M.; Min, B.; Goh, K. I., Towards real-world complexity: an introduction to multiplex networks, Eur. Phys. J. B, 88, 2, 1-20 (2015)
[11] Buono, C.; Alvarez-Zuzek, L. G.; Macri, P. A., Epidemics in partially overlapped multiplex networks, PloS One, 9, 3, 5 (2014)
[12] Gómez, S.; Arenas, A.; Borge-Holthoefer, J.; Meloni, S.; Moreno, Y., Discrete-time Markov chain approach to contact-based disease spreading in complex networks, Europhys. Lett., 89, 38009 (2010)
[13] Wu, Q. C.; Zhang, H. F.; Small, M.; Fu, X. C., Threshold analysis of the susceptible-infected-susceptible model on overlay networks, Commun. Nonlinear Sci. Numer. Simul., 19, 7, 2435-2443 (2014) · Zbl 1457.92182
[14] Sahneh, F. D.; Scoglio, C., Competitive epidemic spreading over arbitrary multilayer networks, Phys. Rev. E, 89, 6, 062817 (2014)
[15] Pastor-Satorras, R.; Vespignani, A., Immunization of complex networks, Phys. Rev. E, 65, 036104 (2002)
[16] Buono, C.; Braunstein, L. A., Immunization strategy for epidemic spreading on multilayer networks, Europhys. Lett., 109, 2, 26001 (2015)
[18] Zhao, D. W.; Li, L. X.; Peng, H. P.; Luo, Q.; Yang, Y. X., Multiple routes transmitted epidemics on multiplex networks, Phys. Lett. A, 378, 10, 770-776 (2014) · Zbl 1323.92216
[19] Zhao, D. W.; Wang, L. H.; Li, S. D.; Wang, Z.; Wang, L.; Gao, B., Immunization of epidemics in multiplex networks, PloS One, 9, 11, e112018 (2014)
[20] Fu, X. C.; Small, M.; Walker, D. M.; Zhang, H. F., Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys. Rev. E, 77, 036113 (2008)
[21] Kiss, I. Z.; Green, D. M.; Kao, R. R., The effect of contact heterogeneity and multiple routes of transmission on final epidemic size, Math. Biosci., 203, 1, 124-136 (2006) · Zbl 1099.92063
[22] Funk, S.; Jansen, V. A.A., Interacting epidemics on overlay networks, Phys. Rev. E, 81, 036118 (2010)
[23] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics in finite size scale-free networks, Phys. Rev. E, 65, 035108(R) (2002)
[24] Sanz, J.; Xia, C. Y.; Meloni, S., Dynamics of interacting diseases, Phys. Rev. X, 4, 4, 041005 (2014)
[25] Wang, J. Z.; Liu, Z. R., Mean-field level analysis of epidemics in directed networks, J. Phys. A: Math. Theor., 42, 355001 (2009) · Zbl 1176.92046
[26] Zhang, X. G.; Sun, G. Q.; Ma, J. L.; Jin, Z., Epidemic dynamics on semi-directed complex networks, Math. Biosci., 246, 2, 242-251 (2013) · Zbl 1283.92056
[27] Barabási, A. L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509-512 (1999) · Zbl 1226.05223
[28] Erdös, P.; Rényi, A., On the evolution of random graphs, Publ. Math.Inst. Hung. Acad. Sci., 5, 17-61 (1960) · Zbl 0103.16301
[29] Li, C.; van de Bovenkamp, R.; van Mieghem, P., Susceptible-infected-susceptible model: a comparison of n-intertwined and heterogeneous mean-field approximations, Phys. Rev. E, 86, 2, 026116 (2012)
[30] Ferreira, S. C.; Castellano, C.; Pastor-Satorras, R., Epidemic thresholds of the susceptible-infected-susceptible model on networks: a comparison of numerical and theoretical results, Phys. Rev. E, 86, 4, 041125 (2012)
[31] Wu, Q. C.; Fu, X. C., Immunization and epidemic threshold of an SIS model in complex networks, Physica A, 444, 15, 576-581 (2016) · Zbl 1400.92558
[32] Boguna, M.; Pastor-Satorras, R.; Vespignani, A., Absence of epidemic threshold in scale-free networks with degree correlations, Phys. Rev. Lett., 90, 028701 (2003)
[33] Jo, H. H.; Moon, H. T.; Baek, S. K., Immunization dynamics on a 2-layer network model, Physica A, 361, 2, 534-542 (2006)
[34] Wang, W.; Tang, M.; Yang, H.; Do, Y.; Lai, Y. C.; Lee, G., Asymmetrically interacting spreading dynamics on complex layered networks, Sci. Rep., 4, 5097 (2014)
[35] Madar, N.; Kalisky, T.; Cohen, R.; ben Avraham, D.; Havlin, S., Immunization and epidemic dynamics in complex networks, Eur. Phys. J. B, 38, 2, 269-276 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.