×

Spreading dynamics and synchronization behavior of periodic diseases on complex networks. (English) Zbl 1400.92594

Summary: A new discrete-susceptible-infected-recovered-susceptible (DSIRS) model is introduced in this paper to investigate the disease spreading dynamics and synchronization behavior on complex networks. In the model, every node is considered independently rather than as a part of one group that has a common node state in complex networks. The synchronization phenomenon of epidemic spreading based on the model in random networks and scale-free networks is analyzed. Synchronization is affected by the infection duration, the complete cycle duration and the topological network structure, which affects the immune strategy. Accordingly, immune strategies including the maximum degree immune strategy and the nearest immune strategy are proposed to prevent disease propagating.

MSC:

92D40 Ecology
91D30 Social networks; opinion dynamics
Full Text: DOI

References:

[1] Albert, R.; Barabási, A. L., Statistical mechanics of complex networks, Rev. Modern Phys., 74, 1, 47-97 (2002) · Zbl 1205.82086
[2] Newman, M. E.J., The structure and function of complex networks, SIAM Rev., 45, 2, 167-256 (2003) · Zbl 1029.68010
[3] Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Critical phenomena in complex networks, Rev. Modern Phys., 80, 4, 1275-1335 (2008)
[4] Dorogovtsev, S. N.; Mendes, J. F.F., Evolution of random networks, Adv. Phys., 51, 11, 1079-1187 (2002)
[5] Zhao, Z.; Zhang, P.; Yang, H., Cascading failures in interconnected networks with dynamical redistribution of loads, Physica A, 433, 204-210 (2015)
[6] Liu, Z.; Hu, B., Epidemic spreading in community networks, Europhys. Lett., 72, 2, 315-321 (2005)
[7] Newman, M. E.J., The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, 98, 2, 404-409 (2001) · Zbl 1065.00518
[8] Liljeros, F.; Edling, C. R.; Amaral, L. A.; Stanley, H. E.; Aberg, Y., The web of human sexual contacts, Nature, 411, 6840, 907-908 (2001)
[9] Sun, X.; Liu, Y.-H.; Li, B.; Li, J.; Han, J.-W.; Liu, X.-J., Mathematical model for spreading dynamics of social network worms, J. Stat. Mech. Theory Exp., 4, 4, P04009 (2012) · Zbl 1459.91150
[10] Huang, S., Dynamic analysis of an SEIRS model with nonlinear infectivity on complex networks, Int. J. Biomath., 9, 1 (2015), 1650009: 1-25 · Zbl 1334.92406
[11] Knipl, D., A new approach for designing disease intervention strategies in metapopulation models, J. Biol. Dyn., 10, 1, 71-94 (2015) · Zbl 1448.92311
[12] Liu, J.; Zhao, Y.; Zhu, H., Bifurcation of an SIS model with nonlinear contact rate, J. Math. Anal. Appl., 432, 2, 1119-1138 (2015) · Zbl 1327.34090
[13] Ge, J.; Kim, K. L.; Lin, Z.; Zhu, H., A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259, 10, 5486-5509 (2015) · Zbl 1341.35171
[14] Zhu, G.; Fu, X.; Tang, Q.; Li, K., Mean-field modeling approach for understanding epidemic dynamics in interconnected networks, Chaos Solitons Fractals, 80, 117-124 (2015) · Zbl 1354.05126
[15] Juang, J.; Liang, Y.-H., Analysis of a general SIS model with infective vectors on the complex networks, Physica A, 437, 382-395 (2015) · Zbl 1400.92505
[16] Wang, Y.; Cao, J.; Alofi, A.; Al-Mazrooei, A.; Elaiw, A., Revisiting node-based SIR models in complex networks with degree correlations, Physica A, 437, 75-88 (2015) · Zbl 1400.92553
[17] Anderson, R. M.; May, R. M., Infectious Diseases of Humans, Dynamics and Control (1991), Oxford University Press: Oxford University Press Oxford
[18] Bailey, N., Epidemic Theory of Infectious Diseases and its Applications (2004), Hafner Press: Hafner Press New York
[19] Liu, Y.; Wei, B.; Wang, Z.; Deng, Y., Immunization strategy based on the critical node in percolation transition, Phys. Lett. A, 379, 43-44, 2795-2801 (2015) · Zbl 1349.92143
[20] Ababou, M.; Vandewalle, N.; Moussa, N.; Bouziani, M. E.; Ludewig, F., Epidemic spreading in a finite-precision BA model, Physica A, 390, 20, 3573-3578 (2011)
[21] Ababou, M.; Vandewalle, N.; Moussa, N.; EI Bouziani, M.; Ludewig, F., Spreading of periodic diseases and synchronization phenomena on networks, Physica A, 392, 10, 2526-2531 (2013)
[22] Zhang, C.; Li, W.; Wang, K., Graph-theoretic method on exponential synchronization of stochastic coupled networks with Markovian switching, Nonlinear Anal. Hybrid Syst., 15, 37-51 (2015) · Zbl 1301.93152
[23] Ansari, S. P.; Agrawal, S. K.; Das, S., Stability analysis of fractional-order generalized chaotic susceptible-infected-recovered epidemic model and its synchronization using active control method, Pramana, 84, 1, 23-32 (2014)
[24] Forgoston, E.; Shaw, L. B.; Schwartz, I. B., A framework for inferring unobserved multistrain epidemic subpopulations using synchronization dynamics, Bull. Math. Biol., 77, 7, 1437-1455 (2015) · Zbl 1335.92092
[25] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization (2001), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0993.37002
[26] Osipov, G. V.; Kurths, J.; Zhou, C., Synchronization in Oscillatory Networks (2007), Springer: Springer Berlin, Germany · Zbl 1137.37018
[27] Pastor-Satorras, R.; Vespignan, A., Immunization of complex networks, Phys. Rev. E, 65, 3, 106-126 (2001)
[28] Wu, Q.; Fu, X.; Jin, Z.; Small, M., Influence of dynamic immunization on epidemic spreading in networks, Physica A, 419, 566-574 (2015) · Zbl 1395.92176
[29] Bellingeri1, M.; Cassi, D.; Vincenzi, S., Efficiency of attack strategies on complex model and real-world networks, Physica A, 414, 10, 174-180 (2014)
[30] Hadidjojo, J.; Cheong, S. A., Equal graph partitioning on estimated infection network as an effective epidemic mitigation measure, PLoS One, 6, 7 (2011), e22124(1-10)
[31] Bellingeri, M.; Agliari, E.; Cassi, D., Optimization strategies with resource scarcity: From immunization of networks to the traveling salesman problem, Modern Phys. Lett. B, 29 (2015), 1550180(1-10)
[32] Anderson, R. M.; May, R. M., Infectious Diseases of Humans (1992), Oxford University Press: Oxford University Press Oxford
[33] Shi, M., An investigation into epidemics spreading on complex networks (2007), of Shanghai Jiao Tong University, (the master degree thesis)
[34] Fu, X.; Small, M.; Walker, D. M.; Zhang, H., Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys. Rev. E, 77, 3 Pt 2, 420-427 (2008)
[36] Samanta, G. P., A delayed hand-foot-mouth disease model with pulse vaccination strategy, Comput. Appl. Math., 34, 1131-1152 (2015) · Zbl 1328.34086
[37] Yang, H.-X.; Wang, B.-H., Immunization of traffic-driven epidemic spreading, Physica A, 443, 86-90 (2016)
[38] Gade, P. M.; Sinha, S., Dynamic transitions in small world networks: Approach to equilibrium, Phys. Rev. E, 72, 5Pt1, 168-191 (2005)
[39] Kuperman, M.; Abramson, G., Small world effect in an epidemiological model, Phys. Rev. Lett., 86, 13, 2909-2912 (2001)
[40] Kuramoto, Y., Chemical Oscillations, Waves and Turbulence (1984), Springer: Springer Berlin · Zbl 0558.76051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.