×

Practical finite-time command filtered backstepping control of MPCVD reactor systems with uncertainties. (English) Zbl 1520.93487

Summary: A practical finite-time command filtered backstepping control method is proposed in this paper for a microwave plasma chemical vapor deposition (MPCVD) reactor system. The MPCVD reactor system is modeled as a coupled nonlinear system with unknown control direction functions and unknown nonlinearities. To address the unknown nonlinearities, novel practical finite-time command filters are proposed to construct the estimations of such nonlinearities. On the other hand, an equivalent augmented system of the reactor system is proposed to address the design challenges that posed by the system unknown control direction functions. Additionally, it can be concluded that the proposed control method ensures practical finite-time stability of the reactor system tracking errors by using the practical finite-time Lyapunov stability criterion. Finally, the effectiveness of the approach is demonstrated through the simulation results.

MSC:

93D40 Finite-time stability
93C10 Nonlinear systems in control theory
93C95 Application models in control theory
Full Text: DOI

References:

[1] Bolshakov, A.; Ralchenko, V.; Shu, G.; Dai, B.; Yurov, V.; Bushuev, E.; Khomich, A.; Altakhov, A.; Ashkinazi, E.; Antonova, I.; Vlasov, A.; Voronov, V.; Sizov, Y.; Vartapetov, S.; Konov, V.; Zhu, J., Single crystal diamond growth by MPCVD at subatmospheric pressures, Mater. Today Commun., 25, 101635 (2020)
[2] Zhu, W.; Su, Z.; Guo, J.; Li, K.; Chen, K.; Li, W.; Yi, A.; Liao, Z.; Luo, Y.; Hu, Y.; Xu, Y.; Lin, Q.; Meng, X., Preparation and characterization of diamond-like carbon (DLC) film on 316l stainless steel by microwave plasma chemical vapor deposition (MPCVD), Diam. Relat. Mater., 122, 108820 (2022)
[3] Ashkinazi, E.; Ryzhkov, S.; Martyanov, A.; Bolshakov, A.; Sergeichev, K.; Shevchenko, M.; Khomich, A.; Sovyk, D.; Ralchenko, V., Temperature stabilization of WC-Co cutting inserts with feedback to IR pyrometer upon growth of multilayer diamond coatings by microwave plasma chemical vapor deposition, Mater. Today Proc., 38, 1495-1501 (2021)
[4] Tianping, R.; Yunfeng, Y., Design of cooling water temperature control system for microwave plasma chemical vapor deposition equipment, 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), 866-869 (2020)
[5] Yang, X.; Zheng, X., Adaptive NN backstepping control design for a 3-DOF helicopter: theory and experiments, IEEE Trans. Ind. Electron., 67, 5, 3967-3979 (2020)
[6] Yang, X.; Zheng, X.; Gao, H., SGD-based adaptive NN control design for uncertain nonlinear systems, IEEE Trans. Neural Netw. Learn. Syst., 29, 10, 5071-5083 (2018)
[7] Shen, X.; Liu, J.; Alcaide, A. M.; Yin, Y.; Leon, J. I.; Vazquez, S.; Wu, L.; Franquelo, L. G., Adaptive second-order sliding mode control for grid-connected NPC converters with enhanced disturbance rejection, IEEE Trans. Power Electron., 37, 1, 206-220 (2022)
[8] Yao, D.; Li, H.; Shi, Y., Adaptive event-triggered sliding mode control for consensus tracking of nonlinear multi-agent systems with unknown perturbations, IEEE Trans. Cybern., 53, 4, 2672-2684 (2023)
[9] Yin, Y.; Vazquez, S.; Marquez, A.; Liu, J.; Leon, J. I.; Wu, L.; Franquelo, L. G., Observer-based sliding-mode control for grid-connected power converters under unbalanced grid conditions, IEEE Trans. Ind. Electron., 69, 1, 517-527 (2022)
[10] Liu, J.; Shen, X.; Alcaide, A. M.; Yin, Y.; Leon, J. I.; Vazquez, S.; Wu, L.; Franquelo, L. G., Sliding mode control of grid-connected neutral-point-clamped converters via high-gain observer, IEEE Trans. Ind. Electron., 69, 4, 4010-4021 (2022)
[11] Liu, Z.; Lin, W.; Yu, X.; Rodriguez-Andina, J. J.; Gao, H., Approximation-free robust synchronization control for dual-linear-motors-driven systems with uncertainties and disturbances, IEEE Trans. Ind. Electron., 69, 10, 10500-10509 (2022)
[12] Yang, X.; Zheng, X., Swing-up and stabilization control design for an underactuated rotary inverted pendulum system: theory and experiments, IEEE Trans. Ind. Electron., 65, 9, 7229-7238 (2018)
[13] Shi, P.; Sun, W.; Yang, X.; Rudas, I. J.; Gao, H., Master-slave synchronous control of dual-drive gantry stage with cogging force compensation, IEEE Trans. Syst. Man Cybern. Syst., 53, 1, 216-225 (2023)
[14] Yang, X.; Zheng, X., Gradient descent algorithm-based adaptive NN control design for an induction motor, IEEE Trans. Syst. Man Cybern. Syst., 51, 2, 1027-1034 (2021)
[15] Zheng, X.; Yang, X.; Zhao, H.; Chen, Y., Saturated adaptive-law-based backstepping and its applications to a quadrotor hover, IEEE Trans. Ind. Electron., 69, 12, 13473-13482 (2022)
[16] Zheng, X.; Yu, X.; Jiang, J.; Yang, X., Practical finite-time command filtered backstepping with its application to DC motor control systems, IEEE Trans. Ind. Electron. (2023)
[17] Monopoli, V. G.; Marquez, A.; Leon, J. I.; Liserre, M.; Buticchi, G.; Franquelo, L. G.; Vazquez, S., Applications and modulation methods for modular converters enabling unequal cell power sharing: carrier variable-angle phase-displacement modulation methods, IEEE Ind. Electron. Mag., 16, 1, 19-30 (2022)
[18] Zheng, X.; Yang, X., Command filter and universal approximator based backstepping control design for strict-feedback nonlinear systems with uncertainty, IEEE Trans. Automat. Contr., 65, 3, 1310-1317 (2020) · Zbl 1533.93822
[19] Li, Z.; Yu, X.; Qiu, J.; Gao, H., Cell division genetic algorithm for component allocation optimization in multifunctional placers, IEEE Trans. Ind. Inf., 18, 1, 559-570 (2022)
[20] Song, F.; Li, Z.; Yang, S.; Rodriguez-Andina, J. J., Anti-disturbance compensation for quadrotor close crossing flight based on deep reinforcement learning, IEEE Trans. Ind. Electron., 70, 3, 3013-3023 (2023)
[21] Wang, X.; Cao, Y.; Niu, B.; Song, Y., A novel bipartite consensus tracking control for multiagent systems under sensor deception attacks, IEEE Trans. Cybern. (2022)
[22] Gao, H.; Li, Z.; Yu, X.; Qiu, J., Hierarchical multiobjective heuristic for PCB assembly optimization in a beam-head surface mounter, IEEE Trans. Cybern., 52, 7, 6911-6924 (2022)
[23] Tang, L.; Ding, Z.; Zou, W.; Yang, Y., Command filtered adaptive output feedback design with novel Lyapunov-based analysis for nonlinear systems with unmodeled dynamics, J. Franklin Inst. (2022) · Zbl 1496.93048
[24] Sheng, N.; Ai, Z.; Tang, J., Fuzzy adaptive command filtered backstepping fault-tolerant control for a class of nonlinear systems with actuator fault, J. Franklin Inst., 358, 13, 6526-6544 (2021) · Zbl 1470.93092
[25] Li, C.; Yang, X., Neural networks-based command filtering control for a table-mount experimental helicopter, J. Franklin Inst., 358, 1, 321-338 (2021) · Zbl 1455.93130
[26] Song, S.; Park, J. H.; Zhang, B.; Song, X.; Zhang, Z., Adaptive command filtered neuro-fuzzy control design for fractional-order nonlinear systems with unknown control directions and input quantization, IEEE Trans. Syst. Man Cybern. Syst., 51, 11, 7238-7249 (2021)
[27] Yu, J.; Cheng, S.; Shi, P.; Lin, C., Command-filtered neuroadaptive output-feedback control for stochastic nonlinear systems with input constraint, IEEE Trans. Cybern., 1-10 (2021)
[28] Xia, J.; Zhang, J.; Feng, J.; Wang, Z.; Zhuang, G., Command filter-based adaptive fuzzy control for nonlinear systems with unknown control directions, IEEE Trans. Syst. Man Cybern. Syst., 51, 3, 1945-1953 (2021)
[29] Li, S.; Ahn, C. K.; Xiang, Z., Command-filter-based adaptive fuzzy finite-time control for switched nonlinear systems using state-dependent switching method, IEEE Trans. Fuzzy Syst., 29, 4, 833-845 (2021)
[30] Wang, X.; Niu, B.; Wang, H.; Zhao, X.; Chen, W., Prescribed performance-based finite-time consensus technology of nonlinear multiagent systems and application to FDPs, IEEE Trans. Circuits Syst. II Express Briefs, 70, 2, 591-595 (2023)
[31] Cui, G.; Yu, J.; Shi, P., Observer-based finite-time adaptive fuzzy control with prescribed performance for nonstrict-feedback nonlinear systems, IEEE Trans. Fuzzy Syst., 30, 3, 767-778 (2022)
[32] Lin, G.; Cheng, Z.; Ren, H.; Li, H.; Lu, R., Command-filter-based finite-time control for human-in-the-loop UAVs with dead-zone inputs, 2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS), 338-343 (2021)
[33] Lu, S.; Wang, X.; Li, Y., Adaptive neural network finite-time command filtered tracking control of fractional-order permanent magnet synchronous motor with input saturation, J. Franklin Inst., 357, 18, 13707-13733 (2020) · Zbl 1454.93133
[34] Fan, J.; Zhao, L., Distributed finite-time adaptive consensus tracking control for multiple AUVs with state constraints, J. Franklin Inst., 358, 17, 9158-9177 (2021) · Zbl 1478.93596
[35] Wei, W.; Zhang, W., Command-filter-based adaptive fuzzy finite-time output feedback control for state-constrained nonlinear systems with input saturation, IEEE Trans. Fuzzy Syst., 1 (2021)
[36] Yu, X.; Meng, X.; Zheng, X.; Liu, Y., Improved adaptive backstepping control of MPCVD reactor systems with non-parametric uncertainties, J. Franklin Inst., 360, 3, 2182-2192 (2023) · Zbl 1507.93130
[37] Yu, X.; Yang, J.; Meng, X.; Zheng, X.; Yang, X., Event-triggered adaptive NN practical finite-time control with its application to MPCVD reactors, J. Franklin Inst., 360, 3, 1870-1883 (2023) · Zbl 1507.93155
[38] Yu, J.; Shi, P.; Zhao, L., Finite-time command filtered backstepping control for a class of nonlinear systems, Automatica, 92, 173-180 (2018) · Zbl 1388.93047
[39] Yang, X.; Zheng, X.; Chen, Y., Position tracking control law for an electro-hydraulic servo system based on backstepping and extended differentiator, IEEE/ASME Trans. Mechatron., 23, 1, 132-140 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.