×

Discontinuous Galerkin method for the fully dynamic Biot’s model. (English) Zbl 1464.65188

Summary: In this paper, a fully discrete scheme of the fully dynamic Biot’s model problem is proposed, which is constructed by using interior penalty discontinuous Galerkin method for the spatial approximation and a tailor difference scheme to approximate the first and second order temporal derivative terms. First of all, we prove the existence and uniqueness of solutions of proposed fully discrete scheme in proper norms. Then, based on the error equations a priori error estimates shall be derived for both primal variables displacement and pore pressure. Finally, a series of numerical examples are given to examine the convergence results by using the proposed numerical scheme to solve the fully dynamic Biot’s model problem.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S05 Finite element methods applied to problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces (2003), Academic Press: Academic Press New York · Zbl 1098.46001
[2] Biot, M. A., Theorey of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 2, 82-185 (1955) · Zbl 0067.23603
[3] Biot, M. A., General solutions of the equations of elasticity and consolidation for a porous material, J. Appl. Phys., 223, 1, Article 91 pp. (1956) · Zbl 0074.19101
[4] Bryne, H.; Preziosi, L., Modeling solid tumour growth using the theory of mixtures, Math. Med. Biol., 20, 4, 341-366 (2003) · Zbl 1046.92023
[5] Burman, E.; Fernández, M. A., Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility, Comput. Methods Appl. Math., 198, 5-8, 766-784 (2009) · Zbl 1229.76045
[6] Carman, P. C., Permeability of saturated sands, soils and clays, J. Agric. Sci., 29, 02, 262 (1939)
[7] Cesmelioglu, A., Analysis of the coupled Navier-Stokes/Biot problem, J. Math. Anal. Appl., 456, 970-991 (2017) · Zbl 1402.35216
[8] Cockburn, B.; Kanschat, G.; Schötzau, D.; Schwab, C., Local discontinuous Galerkin methods for the Stokes systems, SIAM J. Numer. Anal., 40, 1, 319-343 (2003) · Zbl 1032.65127
[9] Evans, L. C., Partial Differential Equations (2010), American Mathematical Society · Zbl 1194.35001
[10] Feng, X. B.; Ge, Z. H.; Li, Y. K., Analysis of a multiphysics finite element method for a poroelasticity model, IMA J. Numer. Anal., 38, 330-359 (2018) · Zbl 1406.65085
[11] Ge, Z. H.; Ma, M. X., Multirate iterative scheme based on multiphysics discontinuous Galerkin method for a poroelasticity model, Appl. Numer. Math., 128, 125-138 (2018) · Zbl 1393.65030
[12] Grote, M.; Schötzau, D., Optimal error estimates for the fully discrete interior penalty DG method for the wave equation, J. Sci. Comput., 40, 1-3, 257-272 (2019) · Zbl 1203.65182
[13] Han, W. M.; He, L. M.; Wang, F., Optimal order error estimates for discontinuous Galerkin methods for the wave equation, J. Sci. Comput., 78, 121-144 (2019) · Zbl 1412.65213
[14] Hudson, J. A.; Stephansson, O.; Andersson, J., Coupled t-h-m issues relating to radioactive waste repository design and performance, Int. J. Rock Mech. Min. Sci., 38, 1, 143-161 (2001)
[15] Jing, F. F.; Han, W. M.; Yan, W. J.; Wang, F., Discontinuous Galerkin methods for a stationary Navier-Stokes problem with a nonlinear slip boundary condition of friction type, J. Sci. Comput., 76, 888-912 (2018) · Zbl 1397.65272
[16] Lotfian, Z.; Sivaselvan, M. V., Mixed finite element formulation for dynamics of porous media, Int. J. Numer. Math. Eng., 115, 141-171 (2018) · Zbl 07864832
[17] Phillips, P. J.; Wheeler, M. F., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity: the continuous in time case, Comput. Geosci., 11, 2, 131-144 (2007) · Zbl 1117.74015
[18] Phillips, P. J.; Wheeler, M. F., A coupling of mixed and discontinuous Galerkin finite element methods for poroelasticity, Comput. Geosci., 12, 4, 417-435 (2008) · Zbl 1155.74048
[19] Phillips, P. J.; Wheeler, M. F., Overcoming the problem of locking in linear elasticity and poroelasticity: a heuristic approach, Comput. Geosci., 13, 1, 5-12 (2009) · Zbl 1172.74017
[20] Reed, W. H.; Hill, T. R., Triangular mesh methods for neutron transport equations (1973), Los Alamous: Los Alamous NM, Los Alamous Scientific Laboratory report LA-UR-73-479
[21] Rivière, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation (2008), SIAM: SIAM Philadelphia · Zbl 1153.65112
[22] Rivière, B.; Tan, J.; Thompson, T., Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations, Comput. Math. Appl., 73, 4, 666-683 (2017) · Zbl 1368.65195
[23] Rivière, B.; Wheeler, M. F., A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems, Comput. Math. Appl., 46, 1, 141-163 (2003) · Zbl 1059.65098
[24] Schwalter, R. E., Diffusion in poro-elastic media, J. Math. Anal. Appl., 251, 1, 310-340 (2000) · Zbl 0979.74018
[25] Terzaghi, K., Erdbaumechanik auf Bodenphysikalischer Grundlage (1925), Duticke F.: Duticke F. Vienna · JFM 51.0655.07
[26] Wang, Y.; Dusseault, M. B., A coupled conductive-convective thermo-poroelastic solution and implications for wellbore stability, J. Pet. Sci. Eng., 38, 3, 187-198 (2003)
[27] Zenisek, A., The existence and uniqueness theorem in Biot’s consolidation theory, Apl. Mat., 29, 194-210 (1984) · Zbl 0557.35005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.