×

Analysis of an embedded-hybridizable discontinuous Galerkin method for Biot’s consolidation model. (English) Zbl 1529.65059

Summary: We present an embedded-hybridizable discontinuous Galerkin finite element method for the total pressure formulation of the quasi-static poroelasticity model. Although the displacement and the Darcy velocity are approximated by discontinuous piece-wise polynomials, \(H(\mathrm{div})\)-conformity of these unknowns is enforced by Lagrange multipliers. The semi-discrete problem is shown to be stable and the fully discrete problem is shown to be well-posed. Additionally, space-time a priori error estimates are derived, and confirmed by numerical examples, that show that the proposed discretization is free of volumetric locking.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L10 Soil and rock mechanics
76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
35Q35 PDEs in connection with fluid mechanics
35Q74 PDEs in connection with mechanics of deformable solids

Software:

NGSolve

References:

[1] Adams, R.: Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1975). Pure and Applied Mathematics, Vol. 65 · Zbl 0314.46030
[2] Ambartsumyan, I.; Khattatov, E.; Yotov, I., A coupled multipoint stress-multipoint flux mixed finite element method for the Biot system of poroelasticity, Comput. Methods Appl. Mech. Engrg., 327 (2020) · Zbl 1506.74385 · doi:10.1016/j.cma.2020.113407
[3] Arnold, DN; Brezzi, F., Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér., 19, 1, 7-32 (1985) · Zbl 0567.65078 · doi:10.1051/m2an/1985190100071
[4] Biot, MA, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range, J. Acoust. Soc. Amer., 28, 168-178 (1956) · doi:10.1121/1.1908239
[5] Biot, MA, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range, J. Acoust. Soc. Amer., 28, 179-191 (1956) · doi:10.1121/1.1908241
[6] Boffi, D.; Botti, M.; Di Pietro, DA, A nonconforming high-order method for the Biot problem on general meshes, SIAM J. Sci. Comput., 38, 3, A1508-A1537 (2016) · Zbl 1337.76042 · doi:10.1137/15M1025505
[7] Botti, L.; Botti, M.; Di Pietro, DA, An abstract analysis framework for monolithic discretisations of poroelasticity with application to hybrid high-order methods, Comput. Math. Appl., 91, 150-175 (2021) · Zbl 1524.65517 · doi:10.1016/j.camwa.2020.06.004
[8] Brenner, SC, Poincaré-Friedrichs inequalities for piecewise \(H^1\) functions, SIAM J. Numer. Anal., 41, 1, 306-324 (2003) · Zbl 1045.65100 · doi:10.1137/S0036142902401311
[9] Brenner, SC, Korn’s inequalities for piecewise \(H^1\) vector fields, Math. Comp., 73, 247, 1067-1087 (2004) · Zbl 1055.65118 · doi:10.1090/S0025-5718-03-01579-5
[10] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics (1991), New York: Springer, New York · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[11] Cesmelioglu, A.; Rhebergen, S.; Wells, GN, An embedded-hybridized discontinuous Galerkin method for the coupled Stokes-Darcy system, J. Comput. Appl. Math., 367 (2020) · Zbl 1428.65078 · doi:10.1016/j.cam.2019.112476
[12] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 2, 1319-1365 (2009) · Zbl 1205.65312 · doi:10.1137/070706616
[13] Cockburn, B.; Guzmán, J.; Soon, SC; Stolarski, HK, An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems, SIAM J. Numer. Anal., 47, 4, 2686-2707 (2009) · Zbl 1211.65153 · doi:10.1137/080726914
[14] Di Pietro, DA; Ern, A., Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques et Applications (2012), Berlin: Springer, Berlin · Zbl 1231.65209
[15] Du, S., Sayas, F.J.: An invitation to the theory of the hybridizable discontinuous Galerkin method: Projection, estimates, tools. (2019). doi:10.1007/978-3-030-27230-2 · Zbl 1536.65001
[16] Ern, A.; Guermond, JL, Theory and Practice of Finite Elements, Applied Mathematical Sciences (2004), New York: Springer, New York · Zbl 1059.65103 · doi:10.1007/978-1-4757-4355-5
[17] Feng, X.; Ge, Z.; Li, Y., Analysis of a multiphysics finite element method for a poroelasticity model, IMA J. Numer. Anal., 38, 1, 330-359 (2018) · Zbl 1406.65085 · doi:10.1093/imanum/drx003
[18] Fu, G., A high-order HDG method for the Biot’s consolidation model, Comput. Math. Appl. (2018) · Zbl 1442.65257 · doi:10.1016/j.camwa.2018.09.029
[19] Gaspar, FJ; Lisbona, FJ; Oosterlee, CW, A stabilized difference scheme for deformable porous media and its numerical resolution by multigrid methods, Comput. Visual Sci., 11, 67-76 (2008) · doi:10.1007/s00791-007-0061-1
[20] Güzey, S.; Cockburn, B.; Stolarski, HK, The embedded discontinuous Galerkin method: application to linear shell problems, Int. J. Numer. Meth. Eng., 70, 7, 757-790 (2007) · Zbl 1194.74403 · doi:10.1002/nme.1893
[21] Hansbo, P.; Larson, MG, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method, Comput. Methods Appl. Mech. Engrg., 191, 1895-1908 (2002) · Zbl 1098.74693 · doi:10.1016/S0045-7825(01)00358-9
[22] Hong, Q.; Kraus, J., Parameter-robust stability of classical three-field formulation of Biot’s consolidation model, Electron. Trans. Numer. Anal., 48, 202-226 (2018) · Zbl 1398.65046 · doi:10.1553/etna_vol48s202
[23] Howell, JS; Walkington, NJ, Inf-sup conditions for twofold saddle point problems, Numer. Math., 118, 663-693 (2011) · Zbl 1230.65128 · doi:10.1007/s00211-011-0372-5
[24] Hu, X.; Rodrigo, C.; Gaspar, FJ; Zikatanov, LT, A nonconforming finite element method for the Biot’s consolidation model in poroelasticity, J. Comput. Appl. Math., 310, 143-154 (2017) · Zbl 1381.76175 · doi:10.1016/j.cam.2016.06.003
[25] Kanschat, G.; Rivière, B., A finite element method with strong mass conservation for Biot’s linear consolidation model, J. Sci. Comput. (2018) · Zbl 1407.65192 · doi:10.1007/s10915-018-0843-2
[26] Katz, RF; Knepley, MG; Smith, B.; Spiegelman, M.; Coon, ET, Numerical simulation of geodynamic processes with the portable extensible toolkit for scientific computation, Phys. Earth Planet. In., 163, 1-4, 52-68 (2007) · doi:10.1016/j.pepi.2007.04.016
[27] Keller, T.; May, DA; Kaus, BJP, Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust, Geophys. J. Int., 195, 1406-1442 (2013) · doi:10.1093/gji/ggt306
[28] Kraus, J.; Lederer, PL; Lymbery, M.; Schöberl, J., Uniformly well-posed hybridized discontinuous Galerkin/hybrid mixed discretizations for Biot’s consolidation model, Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1507.76201 · doi:10.1016/j.cma.2021.113991
[29] Lee, JJ, Robust error analysis of coupled mixed methods for Biot’s consolidation model, J. Sci. Comput., 69, 2, 610-632 (2016) · Zbl 1368.65234 · doi:10.1007/s10915-016-0210-0
[30] Lee, JJ, Robust three-field finite element methods for Biot’s consolidation model in poroelasticity, BIT (2017) · Zbl 1428.65044 · doi:10.1007/s10543-017-0688-3
[31] Lee, JJ; Mardal, K.; Winther, R., Parameter-robust discretization and preconditioning of Biot’s consolidation model, SIAM J. Sci. Comput., 39, 1, A1-A24 (2017) · Zbl 1381.76183 · doi:10.1137/15M1029473
[32] Liu, R.: Discontinuous Galerkin finite element solution for poromechanics. Ph.D. thesis, The University of Texas at Austin (2004)
[33] Murad, MA; Thomée, V.; Loula, AF, Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem, SIAM J. Numer. Anal., 33, 3, 1065-1083 (1996) · Zbl 0854.76053 · doi:10.1137/0733052
[34] Oyarzúa, R.; Ruiz-Baier, R., Locking-free finite element methods for poroelasticity, SIAM J. Numer. Anal., 54, 5, 2951-2973 (2016) · Zbl 1457.65210 · doi:10.1137/15M1050082
[35] Phillips, PJ; Wheeler, MF, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity, Comput. Geosci., 12, 4, 417-435 (2008) · Zbl 1155.74048 · doi:10.1007/s10596-008-9082-1
[36] Phillips, PJ; Wheeler, MF, Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach, Computat. Geosci., 13, 5-12 (2009) · Zbl 1172.74017 · doi:10.1007/s10596-008-9114-x
[37] Rhebergen, S.; Wells, G., Analysis of a hybridized/interface stabilized finite element method for the Stokes equations, SIAM J. Numer. Anal., 55, 4, 1982-2003 (2017) · Zbl 1426.76299 · doi:10.1137/16M1083839
[38] Rhebergen, S.; Wells, GN, Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations, J. Sci. Comput. (2018) · Zbl 1407.65297 · doi:10.1007/s10915-018-0760-4
[39] Rhebergen, S.; Wells, GN, An embedded-hybridized discontinuous Galerkin finite element method for the Stokes equations, Comput. Methods Appl. Mech. Engrg. (2020) · Zbl 1441.76072 · doi:10.1016/j.cma.2019.112619
[40] Rivière, B.; Tan, J.; Thompson, T., Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations, Comput. Math. Appl., 73, 4, 666-683 (2017) · Zbl 1368.65195 · doi:10.1016/j.camwa.2016.12.030
[41] Rodrigo, C.; Gaspar, FJ; Hu, X.; Zikatanov, LT, Stability and monotonicity for some discretizations of the Biot’s consolidation model, Comput. Methods Appl. Mech. Engrg., 298, 183-204 (2016) · Zbl 1425.74164 · doi:10.1016/j.cma.2015.09.019
[42] Santos, JE, Elastic wave propagation in fluid-saturated porous media. I. The existence and uniqueness theorems, RAIRO Modél. Math. Anal. Numér., 20, 1, 113-128 (1986) · Zbl 0616.76104 · doi:10.1051/m2an/1986200101131
[43] Santos, JE; Oreña, EJ, Elastic wave propagation in fluid-saturated porous media. II. The Galerkin procedures, RAIRO Modél. Math. Anal. Numér., 20, 1, 129-139 (1986) · Zbl 0616.76105 · doi:10.1051/m2an/1986200101291
[44] Schöberl, J., An advancing front 2D/3D-mesh generator based on abstract rules, J. Comput. Visual Sci., 1, 1, 41-52 (1997) · Zbl 0883.68130 · doi:10.1007/s007910050004
[45] Schöberl, J.: C++11 implementation of finite elements in NGSolve. Tech. Rep. ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology (2014). http://www.asc.tuwien.ac.at/schoeberl/wiki/publications/ngs-cpp11.pdf
[46] Showalter, RE, Diffusion in poro-elastic media, J. Math. Anal. Appl., 251, 1, 310-340 (2000) · Zbl 0979.74018 · doi:10.1006/jmaa.2000.7048
[47] Ženíšek, A., The existence and uniqueness theorem in Biot’s consolidation theory, Apl. Mat., 29, 3, 194-211 (1984) · Zbl 0557.35005
[48] Wells, GN, Analysis of an interface stabilized finite element method: the advection-diffusion-reaction equation, SIAM J. Numer. Anal., 49, 1, 87-109 (2011) · Zbl 1226.65097 · doi:10.1137/090775464
[49] Yi, SY, A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model, Numer. Meth. Part. D. E., 29, 5, 1749-1777 (2013) · Zbl 1274.74455 · doi:10.1002/num.21775
[50] Yi, SY, Convergence analysis of a new mixed finite element method for Biot’s consolidation model, Numer. Methods Partial Differ. Equ., 30, 4, 1189-1210 (2014) · Zbl 1350.74024 · doi:10.1002/num.21865
[51] Yi, SY, A study of two modes of locking in poroelasticity, SIAM J. Numer. Anal., 55, 4, 1915-1936 (2017) · Zbl 1430.74140 · doi:10.1137/16M1056109
[52] Zienkiewicz, OC; Shiomi, T., Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution, Int. J. Numer. Anal. Meth. Geomech., 8, 1, 71-96 (1984) · Zbl 0526.73099 · doi:10.1002/nag.1610080106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.