×

On criteria of existence for nonlinear Katugampola fractional differential equations with \(p\)-Laplacian operator. (English) Zbl 1513.34018

Summary: This paper is devoted to establishing vital criteria of existence and uniqueness for a class of nonlinear Katugampola fractional differential equations (KFDEs) with \(p\)-Laplacian operator subjecting to mixed boundary conditions. The reasoning is inspired by diverse classical fixed point theory, such as the Guo-Krasnosel’skii typefixed point principle and Banach contraction theorem. Additionally, several expressive examples are afforded to show the effectiveness of our theoretical results.

MSC:

34A08 Fractional ordinary differential equations
26A03 Foundations: limits and generalizations, elementary topology of the line
34B15 Nonlinear boundary value problems for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI

References:

[1] B. AHMAD, A. ALSAEDI, S. K. NTOUYAS, J. TARIBOON,Hadamard-type Fractional Differential Equations, Inclusions and Inequalities, Switzerland, Springer International Publishing, 2017. · Zbl 1370.34002
[2] Z. B. BAI, H. S. L ¨U,Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl, 2005, 311 (2): 495-505. · Zbl 1079.34048
[3] B. BASTI, Y. ARIOUA, N. BENHAMIDOUCHE,Existence and uniqueness of solutions for nonlinear Katugampola fractional differential equations, J. Math. Appl, 2019, 42: 35-61. · Zbl 1425.34007
[4] T. Y. CHEN, W. B. LIU,An anti-periodic boundary value problem for the fractional differential equation with a p -Laplacian operator, Appl. Math. Lett, 2012, 25 (11): 1671-1675. · Zbl 1248.35219
[5] R. GARRAPPA,Stability-preserving high-order methods for multiterm fractional differential equations, Internat. J. Bifur. Chaos, 2012, 22 (4): 1250073. · Zbl 1258.34011
[6] A. GRANAS, J. DUGUNDJI,Fixed Point Theory, New York, Springer-Verlag, 2003. · Zbl 1025.47002
[7] D. GUO, V. LAKSHMIKANTHAM,Nonlinear Problems in Abstract Cones, San Diego, Academic Press, 1988. · Zbl 0661.47045
[8] Z. L. HAN, H. L. LU, C. ZHANG,Positive solutions for eigenvalue problems of fractional differential equation with generalized p -Laplacian, Appl. Math. Comput, 2012, 257: 526-536. · Zbl 1338.34015
[9] R. HILFER,Applications of Fractional Calculus in Physics, Singapore, World Scientific, 2000. · Zbl 0998.26002
[10] H. JAFARI, D. BALEANU, H. KHAN, R. A. KHAN, A. KHAN,Existence criterion for the solutions of fractional order p -Laplacian boundary value problems, Bound. Value Probl, 2015, 2015: 164. · Zbl 1381.34016
[11] U. N. KATUGAMPOLA,New approach to a genaralized fractional integral. Appl. Math. Comput, 2011, 218 (3): 860-865. · Zbl 1231.26008
[12] U. N. KATUGAMPOLA,A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl, 2014, 6 (4): 1-15. · Zbl 1317.26008
[13] H. KHAN, W. CHEN, H. G. SUN,Analysis of positive solution and Hyers-Ulam stability for a class of singular fractional differential equations with p -Laplacian in Banach space, Math. Methods Appl. Sci, 2018, 41 (9): 3430-3440. · Zbl 1394.34017
[14] A. A. KILBAS, H. M. SRIVASTAVA, J. J. TRUJILLO,Theory and Applications of Fractional Differential Equations, Amsterdam, Elsevier, 2006. · Zbl 1092.45003
[15] X. P. LIU, M. JIA, W. G. GE,The method of lower and upper solutions for mixed fractional four-point boundary value problem with p -Laplacian operator, Appl. Math. Lett, 2017, 65: 56-62. · Zbl 1357.34018
[16] L. MA, C. P. LI,On Hadamard fractional calculus, Fractals, 2017, 25 (3): 1750033. · Zbl 1371.26009
[17] L. MA, C. P. LI,Onfinite part integrals and Hadamard-type fractional derivatives, J. Comput. Nonlinear Dynam, 2018, 13 (9): 090905.
[18] L. MA,Comparison theorems for Caputo-Hadamard fractional differential equations, Fractals, 2019, 27 (3): 1950036. · Zbl 1433.34012
[19] L. MA,Blow-up phenomena profile for Hadamard fractional differential systems infinite time, Fractals, 2019, 27 (6): 1950093. · Zbl 1435.34015
[20] L. MA,On the kinetics of Hadamard-type fractional differential systems, Fract. Calc. Appl. Anal, 2020, 23 (2): 553-570. · Zbl 1515.34022
[21] L. MA, C. C. LIU, R. L. LIU, B. WANG, Y. X. ZHU,On fractional mean value theorems associated with Hadamard fractional calculus and application, Fract. Differential Calc, 2020, 10 (2): 225-236. · Zbl 1488.26018
[22] C. MILICI, G. DRAG˘ANESCU˘, J. A. T. MACHADO,Introduction to Fractional Differential Equations, Switzerland, Springer International Publishing, 2019. · Zbl 1417.34004
[23] K. PERERA, R. P. AGARWAL, D. O’REGAN,Morse Theoretic Aspects of p -Laplacian Type Operators, Providence, American Mathematical Society, 2010. · Zbl 1192.58007
[24] I. PODLUBNY,Fractional Differential Equations, San Diego, Academic Press, 1999. · Zbl 0924.34008
[25] P. PUCCI, R. SERVADEI,On weak solutions for p -Laplacian equations with weights, Rendiconti Lincei-Matematica e Applicazioni, 2007, 18 (3): 257-267. · Zbl 1223.35128
[26] H. G. SUN, Y. ZHANG, D. BALEANU, W. CHEN, Y. Q. CHEN,A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul, 2018, 64: 213-231. · Zbl 1509.26005
[27] J. J. TAN, C. Z. CHENG,Existence of solutions of boundary value problems for fractional differential equations with p -Laplacian operator in Banach spaces, Numer. Funct. Anal. Optim, 2017, 38 (6): 738-753. · Zbl 1372.34021
[28] F. WANG, L. S. LIU, Y. H. WU,A numerical algorithm for a class of fractional BVPs with p Laplacian operator and singularity-the convergence and dependence analysis, Appl. Math. Comput, 2020, 382: 125339. · Zbl 1445.34026
[29] J. F. XU, J. Q. JIANG, D. O’REGAN,Positive solutions for a class of p -Laplacian Hadamard fractional-order three-point boundary value problems, Mathematics, 2020, 8 (3): 308.
[30] W. G. YANG,Eigenvalue problems for a class of nonlinear Hadamard fractional differential equations with p -Laplacian operator, Math. Slovaca, 2020, 70 (1): 107-124 · Zbl 1505.34043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.