×

Study of fractional boundary value problem using Mittag-Leffler function with two point periodic boundary conditions. (English) Zbl 1387.34002

Summary: In this paper, two point periodic boundary value problem of fractional differential equation involving Caputo fractional derivative of order \(2<\alpha \leq 3\) are studied. Some properties of Mittag-Leffler function are used. Some important and useful results are investigated related to existence and uniqueness of fractional differential equations in terms of Mittag-Leffler by applying fixed point theorems. Three examples are given to illustrate the results.

MSC:

34A08 Fractional ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
Full Text: DOI

References:

[1] Kilbas, A.A., Srivastara, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam (2006) · Zbl 1245.34008
[2] Ahmad, B., Nieto, J.J.: Existence results for non-linear boundary value problems of fractional integro-differential equations with integral boundary conditions. Bound. Value Probl., Article ID 708576, p. 11 (2009) · Zbl 1167.45003
[3] Ahmad, B., Sivasundaram, S.: Existence results for non-linear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Anal.: Hybrid Syst. 3, 251-258 (2009) · Zbl 1193.34056
[4] Ahmad, B., Nieto, J.J.: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topol. Methods Nonlinear Anal. 35, 295-304 (2010) · Zbl 1245.34008
[5] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[6] Balachandran, K., Park, J.Y.: Nonlocal Cauchy problem for abstract fractional semi linear evolution equations. Nonlinear Anal. 71, 4471-4475 (2009) · Zbl 1213.34008 · doi:10.1016/j.na.2009.03.005
[7] Lazarevic, M.P.: Finite time stability analysis of \[P D^{\alpha }\] PDα fractional control of robotic time-delay systems. Mech. Res. Comm. 33, 269-279 (2006) · Zbl 1192.70008 · doi:10.1016/j.mechrescom.2005.08.010
[8] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives. Theory and Applications, Gordon and Breach Science, Yverdon, Switzerland (1993) · Zbl 0818.26003
[9] Rida, S.Z., El-Sherbiny, H.M., Arafa, A.A.M.: On the solution of the fractional nonlinear Schrodinger equation. Phys. Lett. A 372, 553-558 (2008) · Zbl 1217.81068 · doi:10.1016/j.physleta.2007.06.071
[10] Gafiychuk, V., Datsko, B., Melesho, V.: Mathematical modeling of time fractional reaction-diffusion systems. J. Comput. Appl. Math. 220, 215-225 (2008) · Zbl 1152.45008 · doi:10.1016/j.cam.2007.08.011
[11] Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, UK (2009) · Zbl 1188.37002
[12] Chang, Y.K., Nieto, J.J.: Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Model. 49, 605-609 (2009) · Zbl 1165.34313 · doi:10.1016/j.mcm.2008.03.014
[13] Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140-1153 (2011) · Zbl 1221.26002 · doi:10.1016/j.cnsns.2010.05.027
[14] Kaslik, E., Sivasundaram, S.: Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal.: Real World Appl. 13, 1489-1497 (2012) · Zbl 1239.44001 · doi:10.1016/j.nonrwa.2011.11.013
[15] Tan, J., Cheng, C.: Fractional boundary value problems with Riemann-Liouville fractional derivatives. Adv. Differ. Equ. 2015, 80 (2015) · Zbl 1351.34009 · doi:10.1186/s13662-015-0413-y
[16] Ahmad, B., Ntouyas, S.K., Alsaedi, A.: New Existence Results for Nonlinear Fractional Differential Equations with Three-point Integral Boundary Conditions, Hindawi Publishing Corporation, Adv. Diff. Equ., Article ID 107384, p. 11 (2011) · Zbl 1204.34005
[17] Benchohra, M., Graef, J.R., Hamani, S.: Existence results for boundary value problems with nonlinear fractional differential equations. Appl. Anal. 87(7), 851-863 (2008) · Zbl 1198.26008 · doi:10.1080/00036810802307579
[18] Wang, X., Shu, X.: The existence of positive mild solutions for fractional differential evolution equations with nonlocal conditions. Adv. Differ. Equ. 2015, 159 (2015) · Zbl 1422.35178 · doi:10.1186/s13662-015-0461-3
[19] Li, C., Qian, D., Chen, Y.Q.: On Riemann-Liouville and caputo derivatives. Hindawi Publishing Corporation, Discrete Dynamics Nature and Society, Article ID 562494, p. 15 (2011) · Zbl 1213.26008
[20] Ali, M.F., Sharma, M., Jain, R.: An applications of fractional calculus in electrical engineering. Adv. Eng. Technol. Appl. 5(2), 41-45 (2016) · doi:10.18576/aeta/050204
[21] Ahmad, B., Nieto, J.J.: Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral conditions. Bound Value Probl., Article ID 36 (2011) · Zbl 1275.45004
[22] Kilbas, A.A., Saigo, M., Saxena, R.K.: Solutions of volterra integro-differential equations with generalized Mittag-Leffler function in the kernels. J. Integr. Equ. Appl. 14, 377-396 (2002) · Zbl 1041.45011 · doi:10.1216/jiea/1181074929
[23] Saxena, J., Sharma, K.: An overview: fractional calculus with function. Int. J. Math. Comput. Res. 3, 1165-1167 (2015)
[24] Wiman, A.: Uber den fundamental satz in der theorie der functionen \[E_{\alpha }(x)\] Eα(x). Acta Math. 29, 191-201 (1905) · JFM 36.0471.01 · doi:10.1007/BF02403202
[25] Prabhakar, T.R.: A singular integral equation with a general Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7-15 (1971) · Zbl 0221.45003
[26] Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. Hindawi Publishing Corporation J. Appl. Math.,Article ID 298628, p. 51 (2011) · Zbl 1218.33021
[27] Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag-Leffler function and generalized fractional calculus operators. Integr. Transf. Spec. Funct. 15, 31-49 (2004) · Zbl 1047.33011 · doi:10.1080/10652460310001600717
[28] Granas, A., Dugundji, J.: Fixed Point Theory. Springer Monographs in Mathematics. Springer, New York (2003) · Zbl 1025.47002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.