×

On the zeros of \(J_n(z)\pm iJ_{n+1}(z)\) and \([J_{n+1}(z)]^2- J_n(z) J_{n+2}(z)\). (English) Zbl 0987.65022

The authors proves that the complex zeros of \(J_n(z)\pm iJ_{n+1}(z)\) and \([J_{n+1}(z)]^2-J_n(z)J_{n+2}(z)\) are simple. A software package for calculation zeros is used to illustrate the first 30 zeros.

MSC:

65D20 Computation of special functions and constants, construction of tables
30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral)
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
65H05 Numerical computation of solutions to single equations
65E05 General theory of numerical methods in complex analysis (potential theory, etc.)

Software:

CHABIS; ZEBEC
Full Text: DOI

References:

[1] Badkov, V. M., Uniform asymptotic representations of orthogonal polynomials, Proceed. Steklov Inst. Math., 2, 5-41 (1985) · Zbl 0606.42023
[2] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., Bateman Manuscript Project. Higher Transcendental Functions, Vol. 2 (1953), McGraw-Hill: McGraw-Hill New York · Zbl 0051.30303
[3] Henrici, P., Applied and Computational Complex Analysis: I. Power Series - Integration - Conformal Mapping - Location of Zeros (1974), Wiley: Wiley New York · Zbl 0313.30001
[4] Kravanja, P.; Ragos, O.; N. Vrahatis, M.; Zafiropoulos, F. A., ZEBEC: A mathematical software package for computing simple zeros of Bessel functions of real order and complex argument, Comput. Phys. Comm., 113, 2-3, 220-238 (1998) · Zbl 0999.33003
[5] MacDonald, D. A., The roots of \(J_0(z)\)−i \(J_1(z)=0\), Quart. Appl. Math., XLVII, 2, 375-378 (1989) · Zbl 0695.33006
[6] MacDonald, D. A., The zeros of \(J_1^2(ζ)\)−\(J_0(ζ)J_2(ζ)=0\) with an application to swirling flow in a tube, SIAM J. Appl. Math., 51, 1, 40-48 (1991) · Zbl 0716.33005
[7] MacDonald, D. A., On the computation of zeroes of \(J_n(z)\)−i \(J_{n+1}(z)=0\), Quart. Appl. Math., LV, 4, 623-633 (1997) · Zbl 0905.33001
[8] Synolakis, C. E., The runup of solitary waves, J. Fluid Mech., 185, 523-545 (1987) · Zbl 0633.76021
[9] Szász, O., Inequalities concerning ultraspherical polynomials and Bessel functions, Proc. Amer. Math. Soc., 1, 2, 256-267 (1950) · Zbl 0037.33002
[10] Tadepalli, S.; Synolakis, C. E., Roots of \(J_γ(z)\)±i \(J_{γ+1}(z)=0\) and the evaluation of integrals with cylindrical function kernels, Quart. Appl. Math., LII, 1, 103-112 (1994) · Zbl 0798.33003
[11] Thompson. A. R. Barnett, I. J., Modified Bessel functions \(I_ν(z)\) and \(K_ν(z)\) of real order and complex argument, to selected accuracy, Comput. Phys. Comm., 47, 245-257 (1987)
[12] P. Verlinden, An asymptotic estimate of Hilb’s type for generalized Jacobi polynomials on the unit circle, Technical Report TW 260, K.U. Leuven, Department Computer Science, 1997.; P. Verlinden, An asymptotic estimate of Hilb’s type for generalized Jacobi polynomials on the unit circle, Technical Report TW 260, K.U. Leuven, Department Computer Science, 1997.
[13] Vrahatis, M. N., Algorithm 666. CHABIS: A mathematical software package for locating and evaluating roots of systems of nonlinear equations, ACM Trans. Math. Software, 14, 4, 330-336 (1988) · Zbl 0709.65518
[14] Rawlins, A. D., Note on the roots of \(f(z)=J_0(z)\)−i \(J_1(z)\), Quart. Appl. Math., 47, 2, 323-324 (1989) · Zbl 0689.33004
[15] Synolakis, C. E., On the roots of \(f(z)=J_0(z)\)−i \(J_1(z)\), Quart. Appl. Math., 46, 1, 105-107 (1988) · Zbl 0652.33003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.