×

Co-Blumberg spaces. (English) Zbl 0603.54015

A pair (X,Y) of topological spaces is said to be a Blumberg pair (”BP”) if for every \(f: X\to Y\), there exists a dense subset D of X such that \(f| D\) is continuous. X is a Blumberg space if (X,R) is BP, where R denotes the reals. Y is co-Blumberg if (R,Y) is BP. We survey the literature concerning the relationships between Blumberg spaces and Baire spaces and then study the relationships between co-Blumberg spaces and separability properties.

MSC:

54C30 Real-valued functions in general topology
26A15 Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) for real functions in one variable
54E52 Baire category, Baire spaces
Full Text: DOI

References:

[1] Kevin A. Broughan, The intersection of a continuum of open dense sets, Bull. Austral. Math. Soc. 16 (1977), no. 2, 267 – 272. · Zbl 0354.54015 · doi:10.1017/S0004972700023297
[2] J. C. Bradford and Casper Goffman, Metric spaces in which Blumberg’s theorem holds, Proc. Amer. Math. Soc. 11 (1960), 667 – 670. · Zbl 0178.56603
[3] J. C. Bradford, Characterization of metric Blumberg pairs, unpublished manuscript.
[4] Henry Blumberg, New properties of all real functions, Trans. Amer. Math. Soc. 24 (1922), no. 2, 113 – 128. · JFM 49.0176.04
[5] Jack B. Brown, Metric spaces in which a strengthened form of Blumberg’s theorem holds, Fund. Math. 71 (1971), no. 3, 243 – 253. · Zbl 0224.54047
[6] -, Variations on Blumberg’s theorem, Real Analysis Exchange 9 (1983/84), 123-137. · Zbl 0541.54019
[7] W. W. Comfort, A survey of cardinal invariants, General Topology and Appl. 1 (1971), no. 2, 163 – 199. · Zbl 0216.19002
[8] R. Engelking, Outline of general topology, Translated from the Polish by K. Sieklucki, North-Holland Publishing Co., Amsterdam; PWN-Polish Scientific Publishers, Warsaw; Interscience Publishers Division John Wiley & Sons, Inc., New York, 1968. · Zbl 0157.53001
[9] I. Juhász, Cardinal functions in topology, Mathematisch Centrum, Amsterdam, 1971. In collaboration with A. Verbeek and N. S. Kroonenberg; Mathematical Centre Tracts, No. 34. · Zbl 0224.54004
[10] Władysław Kulpa and Andrzej Szymański, Decompositions into nowhere dense sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 1, 37 – 39 (English, with Russian summary). · Zbl 0344.54007
[11] Ronnie Levy, A totally ordered Baire space for which Blumberg’s theorem fails, Proc. Amer. Math. Soc. 41 (1973), 304. · Zbl 0244.54009
[12] Zbigniew Piotrowski and Andrzej Szymański, Concerning Blumberg’s theorem, Houston J. Math. 10 (1984), no. 1, 109 – 115. · Zbl 0607.54011
[13] Lynn Arthur Steen and J. Arthur Seebach Jr., Counterexamples in topology, 2nd ed., Springer-Verlag, New York-Heidelberg, 1978. · Zbl 0386.54001
[14] Petr Štěpánek and Petr Vopěnka, Decomposition of metric spaces into nowhere dense sets, Comment. Math. Univ. Carolinae 8 (1967), 387 – 404; correction, \jname Commentationes Mathematicae Universitatis Carolinae 8 (1967), 567 – 568.
[15] Andrzej Szymański, On \?-Baire and \?-Blumberg spaces, Proceedings of the Conference Topology and Measure, II, Part 1 (Rostock/Warnemünde, 1977) Ernst-Moritz-Arndt Univ., Greifswald, 1980, pp. 151 – 161.
[16] William A. R. Weiss, The Blumberg problem, Trans. Amer. Math. Soc. 230 (1977), 71 – 85. · Zbl 0361.54002
[17] H. E. White Jr., Topological spaces in which Blumberg’s theorem holds, Proc. Amer. Math. Soc. 44 (1974), 454 – 462. · Zbl 0295.54017
[18] H. E. White Jr., Topological spaces in which Blumberg’s theorem holds. II, Illinois J. Math. 23 (1979), no. 3, 464 – 468. · Zbl 0422.54007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.