×

Computational analysis of heat and mass transfer in a micropolar fluid flow through a porous medium between permeable channel walls. (English) Zbl 1525.76003

Summary: The present work numerically investigates the mass and heat transport flow of micropolar fluid in a channel having permeable walls. The appropriate boundary layer approximations are used to convert the system of flow model equations in ODEs, which are then numerically treated with the quasi-linearization method along with finite difference discretization. This technique creates an efficient way to solve the complex dynamical system of equations. A numerical data comparison is presented which assures the accuracy of our code. The outcomes of various problem parameters are portrayed via the graphs and tables. The concentration and temperature accelerate with the impacts of the Peclet numbers for the diffusion of mass and heat, respectively. It is also found that the porosity of the medium has a substantial effect on the skin friction but low effect on the heat and mass transfer rates. Our results may be beneficial in lubrication, foams and aerogels, micro emulsions, micro machines, polymer blends, alloys, etc.

MSC:

76A05 Non-Newtonian fluids
76M20 Finite difference methods applied to problems in fluid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow
35Q35 PDEs in connection with fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] K. Ali, M. Ashraf, and N. Jameel, “Numerical simulation of magnetohydrodynamic micropolar fluid flow and heat transfer in a channel with shrinking walls,” Can. J. Phys., vol. 92, pp. 987-996, 2014. doi:10.1139/cjp-2013-0324. · doi:10.1139/cjp-2013-0324
[2] F. M. Abbasi, Saba, and S. Ahmad, “Heat transfer analysis for peristaltic flow of Carreau-Yasuda fluid through a curved channel with radial magnetic field,” Int. J. Heat Mass Tran., vol. 115, pp. 777-783, 2017. doi:10.1016/j.ijheatmasstransfer.2017.08.048. · doi:10.1016/j.ijheatmasstransfer.2017.08.048
[3] I. Sara Abdelsalam and K. Vafai, “Combined effects of magnetic field and rheological properties on the peristaltic flow of a compressible fluid in a microfluidic channel,” Eur. J. Mech. B Fluid, vol. 65, pp. 398-411, 2017. doi:10.1016/j.euromechflu.2017.02.002. · Zbl 1408.76007 · doi:10.1016/j.euromechflu.2017.02.002
[4] M. U. Khan, S. Zuhra, M. Alam, and R. Nawaz, “Solution to Berman’s model of viscous flow in porous channel by optimal homotopy asymptotic method,” J. Eng. Appl. Sci., vol. 36, pp. 191-200, 2017.
[5] M. Sheikholeslami, M. Hatamiand, and D. D. Ganji, “Micropolar fluid flow and heat transfer in a permeable channel using analytical method,” J. Mol. Liq., vol. 194, pp. 30-36, 2014. doi:10.1016/j.molliq.2014.01.005. · doi:10.1016/j.molliq.2014.01.005
[6] D. Holmes and J. Vermeulen, “Velocity profiles in ducts with rectangular cross sections,” Chem. Eng. Sci., vol. 23, pp. 717-722, 1968. doi:10.1016/0009-2509(68)85006-7. · doi:10.1016/0009-2509(68)85006-7
[7] J. Lee, X. Wang, and J. Chen, An Overview of Micromorphic Theory in Multiscaling of Synthetic and Natural Systems with Self-Adaptive Capability, Taipei, Taiwan, National Taiwan University of Science and Technology Press, 2010, pp. 81-84.
[8] A. C. Eringen, “Simple microfluids,” Int. J. Eng. Sci., vol. 2, no. 2, pp. 205-217, 1964. doi:10.1016/0020-7225(64)90005-9. · Zbl 0136.45003 · doi:10.1016/0020-7225(64)90005-9
[9] A. C. Eringen, Microcontinuum Field Theories: I. Foundations and Solids, Springer New York, Springer Science & Business Media, 2012. · Zbl 0953.74002
[10] A. C. Eringen, “Theory of micropolar fluids,” J. Math. Mech., pp. 1-18, 1966. doi:10.1512/iumj.1967.16.16001. · doi:10.1512/iumj.1967.16.16001
[11] D. Zeidan, L. T. Zhang, and E. Goncalves, “High-resolution simulations for aerogel using two-phase flow equations and Godunov methods,” Int. J. Appl. Mech., vol. 12, no. 5, p. 2050049, 2020. doi:10.1142/s1758825120500490. · doi:10.1142/s1758825120500490
[12] B. Bira, T. R. Sekhar, and D. Zeidan, “Exact solutions for some time-fractional evolution equations using Lie group theory,” Math. Methods Appl. Sci., vol. 41, no. 16, pp. 6717-6725, 2018. doi:10.1002/mma.5186. · Zbl 1516.35156 · doi:10.1002/mma.5186
[13] E. Goncalvès and D. Zeidan, “Numerical simulation of unsteady cavitation in liquid hydrogen flows,” Int. J. Eng. Syst. Model Simulat., vol. 9, no. 1, pp. 41-51, 2017. doi:10.1504/ijesms.2017.081736. · doi:10.1504/ijesms.2017.081736
[14] D. Zeidan, R. Touma, and A. Slaouti, “Implementation of velocity and pressure non-equilibrium in gas-liquid two-phase flow computations,” Int. J. Fluid Mech. Res., vol. 41, no. 6, pp. 547-555, 2014. doi:10.1615/interjfluidmechres.v41.i6.70. · doi:10.1615/interjfluidmechres.v41.i6.70
[15] D. Zeidan, E. Romenski, A. Slaouti, and E. F. Toro, “Numerical study of wave propagation in compressible two‐phase flow,” Int. J. Numer. Methods Fluid., vol. 54, pp. 393-417, 2007. doi:10.1002/fld.1404. · Zbl 1241.76338 · doi:10.1002/fld.1404
[16] D. Zeidan and B. Bira, “Weak shock waves and its interaction with characteristic shocks in polyatomic gas,” Math. Methods Appl. Sci., vol. 42, no. 14, pp. 4679-4687, 2019. doi:10.1002/mma.5675. · Zbl 1423.35244 · doi:10.1002/mma.5675
[17] E. Goncalves, da Silva, and D. Zeidan, “Simulation of compressible two-phase flows using a void ratio transport equation,” Commun. Comput. Phys., vol. 24, no. 1, pp. 167-203, 2018. doi:10.4208/cicp.oa-2017-0024. · Zbl 1488.76142 · doi:10.4208/cicp.oa-2017-0024
[18] E. Goncalves and D. Zeidan, “Numerical study of turbulent cavitating flows in thermal regime,” Int. J. Numer. Methods Heat Fluid Flow, vol. 27, no. 7, pp. 1487-1503, 2017. doi:10.1108/hff-05-2016-0202. · doi:10.1108/hff-05-2016-0202
[19] D. Zeidan, R. Touma, and A. Slaouti, “Application of a thermodynamically compatible two-phase flow model to the high-resolution simulations of compressible gas-magma flow,” Int. J. Numer. Methods Fluid., vol. 76, no. 5, pp. 312-330, 2014. doi:10.1002/fld.3936. · Zbl 1455.76194 · doi:10.1002/fld.3936
[20] I. C. Mandal, S. Mukhopadhyay, and K. Vajravelu, “Melting heat transfer of mhd micropolar fluid flow past an exponentially stretching sheet with slip and thermal radiation,” Int. J. Appl. Comput. Math., vol. 7, p. 31, 2021. doi:10.1007/s40819-021-00955-1. · Zbl 1491.76096 · doi:10.1007/s40819-021-00955-1
[21] A. Dawar, Z. Shah, A. Tassaddiq, S. Islam, and P. Kumam, “Joule heating in magnetohydrodynamic micropolar boundary layer flow past a stretching sheet with chemical reaction and microstructural slip,” Case Stud. Therm. Eng., vol. 25, p. 100870, 2021. doi:10.1016/j.csite.2021.100870. · doi:10.1016/j.csite.2021.100870
[22] M. Boukrouche, L. Paoli, and F. Ziane, “Micropolar fluid flow in a thick domain with multiscale oscillating roughness and friction boundary conditions,” J. Math. Anal. Appl., vol. 495, no. 1, p. 124688, 2021. doi:10.1016/j.jmaa.2020.124688. · Zbl 1489.76004 · doi:10.1016/j.jmaa.2020.124688
[23] G. Gadisa, T. Takele, and S. Jabessa, “Micropolar couple stress nanofluid flow by non-Fourier’s-law heat flux model past a stretching sheet,” J. Math., 2021, Art. no. 6683711. doi:10.1155/2021/6683711. · Zbl 1477.76083 · doi:10.1155/2021/6683711
[24] S. Deo and P. K. Maurya, “Micropolar fluid flow through a porous cylinder embedded in another unbounded porous medium,” J. Porous Media, pp. 89-99, 2021. doi:10.1615/JPorMedia.2021034738. · doi:10.1615/JPorMedia.2021034738
[25] A. Bhat and N. N. Katagi, “Magnetohydrodynamic flow of micropolar fluid and heat transfer between a porous and a non-porous disk,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 75, no. 2, pp. 59-78, 2020. doi:10.37934/arfmts.75.2.5978. · doi:10.37934/arfmts.75.2.5978
[26] R. Ahmed, N. Ali, S. U. Khan, A. M. Rashad, H. A. Nabwey, and I. Tlili, “Novel microstructural features on heat and mass transfer in peristaltic flow through a curved channel,” Front. Physiol., vol. 8, p. 178, 2020. doi:10.3389/fphy.2020.00178. · doi:10.3389/fphy.2020.00178
[27] M. Ashraf, K. S. Syed, and M. A. Kamal, “Numerical simulation of flow of micropolar fluids in a channel with a porous wall,” Int. J. Numer. Methods Fluid., vol. 66, no. 7, pp. 906-918, 2011. doi:10.1002/fld.2291. · Zbl 1432.76015 · doi:10.1002/fld.2291
[28] S. Ahmad, M. Ashraf, and K. Ali, “Micropolar fluid flow with heat generation through a porous medium,” Punjab Univ. J. Math., vol. 52, no. 4, pp. 101-113, 2020.
[29] K. Singh, A. K. Pandey, and M. Kumar, “Entropy generation impact on flow of micropolar fluid via an inclined channel with non-uniform heat source and variable fluid properties,” Int. J. Appl. Comput. Math., vol. 6, p. 85, 2020. doi:10.1007/s40819-020-00831-4. · Zbl 1444.76013 · doi:10.1007/s40819-020-00831-4
[30] X. Si, L. Zheng, X. Zhang, and Y. Chao, “The flow of a micropolar fluid through a porous channel with expanding or contracting walls,” Cent. Eur. J. Phys., vol. 9, no. 3, pp. 825-834, 2011. doi:10.2478/s11534-010-0100-2. · doi:10.2478/s11534-010-0100-2
[31] D. Lu, M. Kahshan, and A. M. Siddiqui, “Hydrodynamical study of micropolar fluid in a porous-walled channel: application to flat plate dialyzer,” Symmetry, vol. 11, p. 541, 2019. doi:10.3390/sym11040541. · doi:10.3390/sym11040541
[32] M. Fakour, A. Vahabzadeh, D. D. Ganji, and M. Hatami, “Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls,” J. Mol. Liq., vol. 204, p. 198, 2015. doi:10.1016/j.molliq.2015.01.040. · doi:10.1016/j.molliq.2015.01.040
[33] S. Ahmad, M. Ashraf, and K. Ali, “Numerical simulation of viscous dissipation in a micropolar fluid flow through a porous medium,” J. Appl. Mech. Tech. Phys., vol. 60, no. 6, pp. 996-1004, 2019. doi:10.1134/s0021894419060038. · Zbl 1451.76038 · doi:10.1134/s0021894419060038
[34] S. Ahmad, M. Ashraf, and K. Ali, “Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls,” J. Therm. Anal. Calorim., vol. 144, no. 3, pp. 941-953, 2021. doi:10.1007/s10973-020-09542-w. · doi:10.1007/s10973-020-09542-w
[35] S. Xinhui, L. Zheng, L. Ping, X. Zhang, and Y. Zhang, “Flow and heat transfer of a micropolar fluid in a porous channel with expanding or contracting walls,” Int. J. Heat Mass Tran., vol. 67, p. 885, 2013.
[36] M. Ashraf, M. A. Kamal, and K. S. Syed, “Numerical simulation of a micropolar fluid between a porous disk and a non-porous disk,” Appl. Math. Model., vol. 33, pp. 1933-1943, 2009. doi:10.1016/j.apm.2008.05.002. · Zbl 1205.76251 · doi:10.1016/j.apm.2008.05.002
[37] M. Ashraf, M. A. Kamal, and K. S. Syed, “Numerical study of asymmetric laminar flow of micropolar fluids in a porous channel,” Comput. Fluids, vol. 38, pp. 1895-1902, 2009. doi:10.1016/j.compfluid.2009.04.009. · Zbl 1242.76009 · doi:10.1016/j.compfluid.2009.04.009
[38] M. Ashraf, K. M. Anwar, and K. S. Syed, “Numerical investigations of asymmetric flow of a micropolar fluid between two porous disks,” Acta Mech Sin, vol. 25, pp. 787-794, 2009. doi:10.1007/s10409-009-0307-x. · Zbl 1269.76006 · doi:10.1007/s10409-009-0307-x
[39] S. Ahmad, K. Ali, M. Rizwan, and M. Ashraf, “Heat and mass transfer attributes of copper-aluminum oxide hybrid nanoparticles flow through a porous medium,” Case Stud. Therm. Eng., p. 100932, 2021. doi:10.1016/j.csite.2021.100932. · doi:10.1016/j.csite.2021.100932
[40] S. Ahmad, M. Ashraf, and K. Ali, “Heat and mass transfer flow of gyrotactic microorganisms and nanoparticles through a porous medium,” Int. J. Heat Technol., vol. 38, no. 2, pp. 395-402, 2020. doi:10.18280/ijht.380215. · doi:10.18280/ijht.380215
[41] S. Ahmad, M. Ashraf, and K. Ali, “Nanofluid flow comprising gyrotactic microorganisms through a porous medium,” J. Appl. Fluid Mech., vol. 13, no. 5, pp. 1539-1549, 2020. doi:10.36884/jafm.13.05.31030. · doi:10.36884/jafm.13.05.31030
[42] K. Ali, S. Ahmad, K. S. Nisar, et al.., “Simulation analysisof MHD hybrid CuAl2O3/H2O nanofluid flow with heat generation through a porous media,” Int. J. Energy Res., pp. 1-15, 2021. doi:10.1002/er.7016, in press. · doi:10.1002/er.7016
[43] S. Ahmad, M. Ashraf, and K. Ali, “Bioconvection due to gyrotactic microbes in a nanofluid flow through a porous medium,” Heliyon, vol. 6, no. 12, p. e05832, 2020. doi:10.1016/j.heliyon.2020.e05832. · doi:10.1016/j.heliyon.2020.e05832
[44] R. Bellman and R. Kalaba, Quasilinearization and Nonlinear Boundary Value Problems, New York, American Elsevier, 1965. · Zbl 0139.10702
[45] R. Bellman, Methods of Nonlinear Analysis, vol. II, New York, Academic Press, 1973. · Zbl 0265.34002
[46] V. Lakshmikantham, S. Leela, and S. Sivasundaram, “Extensions of the method of quasilinearization,” J. Optim. Theor. Appl., vol. 87, pp. 379-401, 1995. doi:10.1007/bf02192570. · Zbl 0837.65068 · doi:10.1007/bf02192570
[47] V. Lakshmikantham and S. Malek, “Generalized quasilinearization,” Nonlinear World, vol. 1, pp. 59-63, 1994. · Zbl 0799.34012
[48] V. Lakshmikantham and A. S. Vatsala, Generalized Quasilinearization for Nonlinear Problems, Dordrecht, Kluwer, 1998. · Zbl 0997.34501
[49] D. Zeidan and R. Touma, “On the computations of gas-solid mixture two-phase flow,” Adv. Appl. Math. Mech., vol. 6, no. 1, pp. 49-74, 2014. doi:10.4208/aamm.12-m1282. · doi:10.4208/aamm.12-m1282
[50] D. Zeidan and R. Touma, “Simulation of gas-liquid two-phase flow based on the Riemann problem,” AIP Conf. Proc., vol. 1482, p. 91, 2012. doi:10.1063/1.4757444. · doi:10.1063/1.4757444
[51] D. Zeidan, A. Slaouti, E. Romenski, and E. F. Toro, “Numerical solution for hyperbolic conservative two-phase flow equations,” Int. J. Comput. Methods, vol. 4, no. 2, pp. 299-333, 2007. doi:10.1142/s0219876207000984. · Zbl 1198.76078 · doi:10.1142/s0219876207000984
[52] A. Mirzaaghaian and D. D. Ganji, “Application of differential transformation method in micropolar fluid flow and heat transfer through permeable walls,” Alex. Eng. J., vol. 55, p. 2183, 2016. doi:10.1016/j.aej.2016.06.011. · doi:10.1016/j.aej.2016.06.011
[53] Y. Shangjun, Z. Kequn, and W. Wang, “Laminar flow of micropolar fluid in rectangular microchannels,” Acta Mech. Sin., vol. 22, pp. 403-408, 2006. · Zbl 1202.76012
[54] N. A. Kelson, A. Desseaux, and T. W. Farrell, “Micropolar flow in a porous channel with high mass transfer,” ANZIAM J., vol. 44, pp. 479-495, 2003. doi:10.21914/anziamj.v44i0.692. · Zbl 1123.76362 · doi:10.21914/anziamj.v44i0.692
[55] M. Ashraf and S. Bashir, “Numerical simulation of MHD stagnation point flow and heat transfer of a micropolar fluid towards a heated shrinking sheet,” Int. J. Numer. Methods Fluid., vol. 69, pp. 384-398, 2012. doi:10.1002/fld.2564. · Zbl 1245.76156 · doi:10.1002/fld.2564
[56] J. W. Hoyt and A. G. Fabula, “The effect of additives on fluid friction,” in US Naval Ordinance Test Station Report, 1964.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.