×

Numerical simulation of MHD stagnation point flow and heat transfer of a micropolar fluid towards a heated shrinking sheet. (English) Zbl 1245.76156

Summary: A comprehensive study of magneto hydrodynamics two-dimensional stagnation flow with heat transfer characteristics towards a heated shrinking sheet immersed in an electrically conducting incompressible micropolar fluid in the presence of a transverse magnetic field is analyzed numerically. The governing continuity, momentum, angular momentum and heat equations together with the associated boundary conditions are first reduced to a set of self similar nonlinear ordinary differential equations using a similarity transformation and are then solved by a method based on finite difference discretization. Some important features of the flow and heat transfer in terms of normal and streamwise velocities, microrotation and temperature distributions for different values of the governing parameters are analyzed, discussed and presented through tables and graphs. The results indicate that the reverse flow caused due to shrinking of the sheet can be stopped by applying a strong magnetic field. The magnetic field enhances the shear stresses and decreases the thermal boundary layer thickness. The heat loss per unit area from the sheet decreases with an increase in the shrinking parameter. Micropolar fluids exhibit reduction in shear stresses and heat transfer rate as compared with Newtonian fluids, which may be beneficial in the flow and thermal control of polymeric processing.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Full Text: DOI

References:

[1] Hiemenz, Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten graden Kreiszylinder, Dinglers Polytechnic Journal 326 pp 321– (1911)
[2] Homann, Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel, Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 16 pp 153– (1936) · JFM 62.0984.02 · doi:10.1002/zamm.19360160304
[3] Chamkha, Hydromagnetic plane and axisymmetric flow near a stagnation point with heat generation, International Communications in Heat and Mass Transfer 25 pp 269– (1998) · doi:10.1016/S0735-1933(98)00014-1
[4] Chamkha, Effects of heat generation/absorption and thermophoresis on hydromagnetic flow with heat and mass transfer over a flat surface, International Journal of Numerical Methods Heat and Fluid Flow 10 pp 432– (2000) · Zbl 0948.76636 · doi:10.1108/09615530010327404
[5] Mahapatra, MHD stagnation point flow towards a stretching sheet, Acta Mechanica 152 pp 191– (2001) · Zbl 0992.76099 · doi:10.1007/BF01176953
[6] Attia, Hydromagnetic stagnation point flow with heat transfer over a permeable surface, The Arabin Journal for Science and Engineering 28 (2003)
[7] Nazar, Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet, International Journal of Engineering Science 42 pp 1241– (2004) · Zbl 1211.76042 · doi:10.1016/j.ijengsci.2003.12.002
[8] Abdelkhalek, The skin friction in the MHD mixed convection stagnation point with mass transfer, International Communications in Heat and Mass Transfer 33 pp 249– (2006) · doi:10.1016/j.icheatmasstransfer.2005.09.008
[9] Wang, Stagnation slip flow and heat transfer on a moving plate, Chemical Engineering Science 61 pp 7668– (2006) · doi:10.1016/j.ces.2006.09.003
[10] Layek, Heat and mass transfer analysis for boundary layer stagnation point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing, International Communications in Heat and Mass Transfer 34 pp 347– (2007) · doi:10.1016/j.icheatmasstransfer.2006.11.011
[11] Paullet, Analysis of stagnation point flow toward a stretching sheet, International Journal of Nonlinear Mechanics 42 pp 1084– (2007) · Zbl 1200.76144 · doi:10.1016/j.ijnonlinmec.2007.06.003
[12] Lok, Mixed convection flow near a nonorthogonal stagnation point towards a stretching vertical plate, International Journal of Heat and Mass Transfer 50 (2007) · Zbl 1183.76870
[13] Anuar, Dual solutions in mixed convection flow near a stagnation point on a vertical surface in a porous medium, International Journal of Heat and Mass Transfer 51 pp 1150– (2008) · Zbl 1152.80307 · doi:10.1016/j.ijheatmasstransfer.2007.04.029
[14] Sharma, Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet, Journal of Applied Fluid Mechanics 2 pp 13– (2008)
[15] Wang, Stagnation flow towards a shrinking sheet, International Journal of Nonlinear Mechanics 43 pp 377– (2008) · doi:10.1016/j.ijnonlinmec.2007.12.021
[16] Hayat, MHD stagnation point flow of an upper convected Maxwell fluid over a stretching surface, Chaos, Solitons and Fractals 39 pp 840– (2009) · Zbl 1197.76006 · doi:10.1016/j.chaos.2007.01.067
[17] Mahapatra, MHD stagnation point flow of a power law fluid towards a stretching surface, International Journal of Non Linear Mechanics 44 pp 124– (2009) · Zbl 1203.76176 · doi:10.1016/j.ijnonlinmec.2008.09.005
[18] Kumaran, Approximate analytic solutions of stagnation point flow in a porous medium, Communications in Nonlinear Science and Numerical Simulation 14 pp 2677– (2009) · Zbl 1221.76148 · doi:10.1016/j.cnsns.2008.10.023
[19] Kumaran, MHD flow past a stretching permeable sheet, Applied Mathematics and Computation 210 pp 26– (2009) · Zbl 1160.76056 · doi:10.1016/j.amc.2008.10.025
[20] Hassanien, Non Darcy unsteady mixed convection flow near the stagnation point on a heated vertical surface embedded in a porous medium with thermal radiation and variable viscosity, Communications in Nonlinear Science and Numerical Simulation 14 pp 1366– (2009) · doi:10.1016/j.cnsns.2008.02.011
[21] Hayat, MHD stagnation point flow and heat transfer over a permeable surface through a porous space, Journal of Porous Media 12 pp 183– (2009) · doi:10.1615/JPorMedia.v12.i2.70
[22] Awang Kechil, Approximate analytical solution for MHD stagnation point flow in porous media, Communications in Nonlinear Science and Numerical Simulation 14 pp 1346– (2009) · Zbl 1422.76063 · doi:10.1016/j.cnsns.2008.02.007
[23] Hoyt JW Fabula AG The effect of additives on fluid friction 1964
[24] Eringen AC Theory of Micropolar Continua 23 40
[25] Eringen, Simple Microfluids, International Journal of Engineering Science 2 pp 205– (1964) · Zbl 0136.45003 · doi:10.1016/0020-7225(64)90005-9
[26] Eringen, Theory of micropolar fluids, Journal of Mathematics and Mechanics 16 pp 1– (1966) · Zbl 0145.21302
[27] Ahmadi, Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, International Journal of Engineering Science 14 pp 639– (1972) · Zbl 0329.76041 · doi:10.1016/0020-7225(76)90006-9
[28] Ariman, Microcontinuum fluid mechanics a review, International Journal of Engineering Science 11 pp 905– (1973) · Zbl 0259.76001 · doi:10.1016/0020-7225(73)90038-4
[29] Ariman, Application of microcontinuum fluid mechanics, International Journal of Engineering Science 12 pp 273– (1974) · Zbl 0273.76003 · doi:10.1016/0020-7225(74)90059-7
[30] Guram, Stagnation flows of micropolar fluids with strong and weak interactions, Computers and Mathematics with Applications 6 pp 213– (1980) · Zbl 0434.76013 · doi:10.1016/0898-1221(80)90030-9
[31] Nazar, Stagnation point flow of a micropolar fluid towards a stretching sheet, International Journal of Nonlinear Mechanics 39 pp 1227– (2004) · Zbl 1348.76156 · doi:10.1016/j.ijnonlinmec.2003.08.007
[32] Chang, Numerical simulation of micropolar fluid flow along a flat plate with wall conduction and boundary effects, Journal of Physics D: Applied Physics 39 pp 1132– (2006) · doi:10.1088/0022-3727/39/6/019
[33] Kumari, Unsteady MHD boundary layer flow and heat transfer of a non Newtonian fluid in the stagnation region of a two dimensional body, Magnetohydrodynamics 43 pp 301– (2007)
[34] Lok, Nonorthognal stagnation point flow of a micropolar fluid, International Journal of Engineering Science 45 pp 173– (2007) · Zbl 1213.76032 · doi:10.1016/j.ijengsci.2006.04.016
[35] Ayub, Analytical solution of stagnation point flow of a viscoelastic fluid towards a stretching surface, Communications in Nonlinear Science and Numerical Simulation 13 pp 1822– (2008) · Zbl 1221.76027 · doi:10.1016/j.cnsns.2007.04.021
[36] Ishak, MHD flow of a micropolar fluid towards a stagnation point on a vertical surface, Computers and Mathematics with Applications 56 pp 3188– (2008) · Zbl 1165.76309 · doi:10.1016/j.camwa.2008.09.013
[37] Subhas Abel, Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non uniform heat source/sink, Communications in Nonlinear Science and Numerical Simulation 14 pp 2120– (2009) · Zbl 1221.76211 · doi:10.1016/j.cnsns.2008.06.004
[38] Ashraf, Numerical study of asymmetric laminar flow of micropolar fluids in a porous channel, Computers and Fluids 38 pp 1895– (2009) · Zbl 1242.76009 · doi:10.1016/j.compfluid.2009.04.009
[39] Shercliff, A Text Book of Magnetohydrodynamics (1965)
[40] Ashraf, Numerical simulation of a micropolar fluid between a porous disk and a non-porous disk, Applied Mathematical Modelling 33 pp 1933– (2009) · Zbl 1205.76251 · doi:10.1016/j.apm.2008.05.002
[41] Ashraf, Numerical investigations of asymmetric flow of a micropolar fluid between two porous disks, Acta Mechanica Sinica 25 pp 787– (2009) · Zbl 1269.76006 · doi:10.1007/s10409-009-0307-x
[42] Gerald, Applied Numerical Analysis (1974)
[43] Milne, Numerical Solutions of Different Equations (1953)
[44] Hildebrand, Introduction to Numerical Analysis (1978) · Zbl 0070.12401
[45] Syed, Proceeding of the 10th International Conference on Numerical Methods in Laminar and Turbulent Flow 429-440 pp 21– (1997)
[46] Deuflhard, Order and step size control in extrapolation methods, Numerische Mathematik 41 pp 399– (1983) · Zbl 0543.65049 · doi:10.1007/BF01418332
[47] Guram, Micropolar flow due to a rotating disc with suction and injection, ZAMM 6 pp 1589– (1981) · Zbl 0481.76009
[48] Takhar, Finite element solution of micropolar flow and heat transfer between two porous discs, International Journal of Engineering Science 38 pp 1907– (2000) · Zbl 1210.76116 · doi:10.1016/S0020-7225(00)00019-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.