×

Flow of two immiscible uniformly rotating micropolar and viscous fluid layers. (English) Zbl 1532.76123

Summary: The interfacial flow of two immiscible uniformly rotating micropolar and viscous fluid layers is investigated in this article. The top layer contains a micropolar fluid of having velocity components \(({u}_1, {v}_1, {w}_1)\), micro-rotation components \(({N}_1, {N}_2, {N}_3)\), density \(\rho_1\), viscosity \(\mu_1\) and pressure \(p_1\) that is rotating with angular velocity \(\omega_1\). A viscous fluid layer exists in the lower region with velocity components \(({u}_2, {v}_2, {w}_2)\), density \(\rho_2\), viscosity \(\mu_2\) and pressure \(p_2\) rotating with constant angular velocity \(\omega_2\). The flow similarity solutions exist under the constraint \({\sigma}^2 \rho = 1\), where \(\sigma = {\omega}_2 /{\omega}_1\) (angular velocities ratio) and \(\rho = {\rho}_2 /{\rho}_1\) (densities ratio). The flow shows a co-rotating case for \(\sigma > 0\) and a counter-rotating case for \(\sigma < 0\). A strong numerical technique known as the Keller-box approach is utilized to obtain the solution of the resultant set of an ordinary differential equation. Similarity solutions can be found for \(0 \leq \sigma \leq 1\) (co-rotating flows) but for \(\sigma < 0\) (counter-rotating flows), the similarity solution occurs up to the certain critical value of \(\sigma\) (i.e., \({\sigma}_c (\mu) \leq \sigma \leq 1\)). Due to the coupling type of the flow near the liquid-liquid interface, the micro polarity parameter \(K_1\) has an impact on both fluid’s layer, even though the micropolar fluid exists just in the upper layer. The key objective of the current article is to analyze how these two different fluid layers will behave under the weak and strong concertation of microelements that can be fruitful in the engineering and scientific disciplines.
© 2023 Wiley-VCH GmbH.

MSC:

76U05 General theory of rotating fluids
76A05 Non-Newtonian fluids
76A20 Thin fluid films
76M55 Dimensional analysis and similarity applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Von Karman, T.: Uber laminate und turbulente Reibung. Z Angew Math Mech.1, 232-252 (1921) · JFM 48.0968.01
[2] Cochran, W.G.: The flow due to rotating disk. Math. Proc. Camb. Philos. Soc.30, 365-375 (1934) · JFM 60.0729.08
[3] Bodewadt, U.T.: Die Drehstromung uber festem Grunde. Z Angew Math Mech.20, 241-253 (1940) · JFM 66.1079.01
[4] Bodonyi, R.J., Stewartson, K.: Boundary‐layer similarity near the edge of a rotating disk. J. Appl. Mech.42(3), 584-590 (1975)
[5] Wang, C.Y.: Axisymmetric stagnation flow on a cylinder. Q. Appl. Math.32, 207-213 (1974) · Zbl 0283.76019
[6] Sava¸ s, O.: Circular waves on stationary disk in rotating flow. Phys. Fluids.26, 3445-3448 (1983)
[7] Sava¸ s, O.: Stability of Bodewadt flow. J Fluid Mech.183, 77-94 (1987)
[8] Lopez, J.M.: Flow between a stationary and a rotating disk shrouded by a co‐rotating cylinder. Phys. Fluids.8(10), 2605-2613 (1996) · Zbl 1027.76689
[9] Lopez, J.M., Weidman, P.D.: Stability of stationary end wall boundary layers during spin‐down. J Fluid Mech.326, 373-398 (1996) · Zbl 0889.76020
[10] Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech.16, 1 (1966)
[11] Eringen, A.C.: Micro continuum Field Theories II: Fluent Media, Springer, New York, (2000)
[12] Lukaszewica, G., Fluids, M.: Theory and applications, Birkhauser, Basel, (1999) · Zbl 0923.76003
[13] Kang, C.K., Eringen, A.C.: The effect of microstructure on the rheological properties of blood. B. Math. Biol.38, 135 (1976) · Zbl 0326.92009
[14] Ahmadi, G.: Self‐similar solution of incompressible micropolar boundary layer flow over a semi‐infinite plate. Int. J. Eng. Sci.14, 639 (1976) · Zbl 0329.76041
[15] Guram, G.S., Smith, A.C.: Stagnation flows of micropolar fluids with strong and weak interactions. Camp. & Maths. with Appls.6, 213-233 (1980) · Zbl 0434.76013
[16] Guram, G.S., Anwar, M.: Steady flow of a micropolar fluid due to a rotating disc. J. Eng. Math.13(3), 223-234 (1979) · Zbl 0398.76030
[17] Kamal, M.A., Ashraf, M., Syed, K.S.: Numerical solution of steady viscous flow of a micropolar fluid driven by injection between two porous disks. Appl. Math. Comput.179(1), 1-10 (2006) · Zbl 1099.76065
[18] Kumar, J.P., Umavathi, J.C., Chamkha, A.J., Pop, I.: Fully developed free‐convective flow of micropolar and viscous fluids in a vertical channel. Appl. Math. Modell.34(5), 1175-1186 (2010) · Zbl 1186.76615
[19] Lok, Y.Y., Ishak, A., Pop, I.: Oblique stagnation slip flow of a micropolar fluid towards a stretching/shrinking surface: a stability analysis. Chin. J. Phys.56(6), 3062-3072 (2018) · Zbl 1543.76045
[20] Mahmood, K., Sajid, M., Ali, N., Sadiq, M.N.: Effects of lubricated surface in the oblique stagnation point flow of a micro‐polar fluid. Eur. Phys. J., C Part. Fields132(7), 1-12 (2017)
[21] Jangili, S., Murthy, J.V.: Thermodynamic analysis for the MHD flow of two immiscible micropolar fluids between two parallel plates. Front. Heat Mass Transf.6(1), 4 (2015), https://doi.org/10.5098/hmt.6.4. · doi:10.5098/hmt.6.4
[22] Sajid, M., Sadiq, M.N., Ali, N., Javed, T.: Numerical simulation for Homann flow of a micropolar fluid on a spiraling disk. Eur. J. Mech. B/Fluids.72, 320-327 (2018) · Zbl 1408.76430
[23] Devakar, M., Raje, A.: A study on the unsteady flow of two immiscible micropolar and Newtonian fluids through a horizontal channel: a numerical approach. Eur. Phys. J., C Part. Fields.133(5), 180 (2018)
[24] Sun, Y., Si, X., Zheng, L., Shen, Y., Zhang, X.: The analysis of the flow of a micropolar fluid between two orthogonally moving porous disks with counter rotating directions. Cent. Eur. J. Phys.11(5), 601-614 (2013)
[25] Murthy, J.R., Srinivas, J.: Second law analysis for Poiseuille flow of immiscible micropolar fluids in a channel. Int. J. Heat Mass Transfer.65, 254-264 (2013)
[26] Srinivas, J., Murthy, J.R., Chamkha, A.J.: Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using HAM. Int. J. Numer. Methods Heat Fluid Flow.26 (3/4) 1027-2049 (2016) · Zbl 1356.76261
[27] Jangili, S., Adesanya, S.O., Falade, J.A., Gajjela, N.Entropy generation analysis for a radiative micropolar fluid flow through a vertical channel saturated with non‐Darcian porous medium. Int. J. Appl. Math.3(4), 3759-3782 (2017) · Zbl 1397.76132
[28] Nagaraju, G., Srinivas, J., Murthy, J.R., Rashad, A.M.: Entropy generation analysis of the MHD flow of couple stress fluid between two concentric rotating cylinders with porous lining. Heat Transf. Asian Res.46(4), 316-330 (2017)
[29] Lock, R.C.: The velocity distribution in the laminar boundary layer between parallel streams. Q. J. Mech. Appl. Math.4, 42-61 (1951) · Zbl 0042.43002
[30] Baker, G.R., Mardeusz, S.J.: The steady viscous flow of two differentially rotating immiscible fluids. Stud. Appl. Math.67(1), 63-71 (1982) · Zbl 0514.76110
[31] Wang, C.Y.: The boundary layer due to shear flow over a still fluid. Phys. Fluids A: Fluid Dynamics.4, 1304-1306 (1992) · Zbl 0766.76019
[32] Weidman, P.D., Wang, C.Y.: Boundary layers at the interface of two different shear flows. Phys. Fluids.30, 053604 (2018)
[33] Weidman, P.D., Turner, M.T.: The steady flow of one uniformly rotating fluid layer above another immiscible uniformly rotating fluid layer. Phys. Rev. Fluids.4(8), 084002 (2019)
[34] Bashir, S., Sajid, M.: Flow of two immiscible uniformly rotating couple stress fluid layers. Phys. Fluids, 34(6), 062101 (2022)
[35] Bashir, S., Sajid, M., Sadiq, M.N.: Two‐layer flow of uniformly rotating immiscible second‐grade and viscous fluid layers. Eur. Phys. J., C Part. Fields.137(12), 1-14 (2022)
[36] Cebeci, T., Bradshaw, P.: Physical and computational aspects of aspects of convective heat transfer (Springer‐Verlag, New York, 1984) · Zbl 0545.76090
[37] Na, T.Y.: Computation methods in engineering boundary value problems (Acad Press, New York, 1979) · Zbl 0456.76002
[38] Gill, A.E., Adrian, E.: Atmosphere‐ocean dynamics, vol. 30 (Academic press, San Diego, 1982)
[39] MacKerrell, S.O.: Stability of B¨odewadt flow. Philos. Trans. A Math. Phys. Eng. Sci.363(1830), 1181-1187 (2005) · Zbl 1152.76388
[40] Healey, J.J.: Inviscid long‐wave theory for the absolute instability of the rotating‐disc boundary layer. Philos. Trans. A Math. Phys. Eng. Sci.462(2069), 1467-1492 (2006) · Zbl 1149.76624
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.