×

A nonlocal energy-informed neural network for isotropic elastic solids with cracks under thermomechanical loads. (English) Zbl 1539.74562

Summary: In this paper, a nonlocal energy-informed neural network is proposed to characterize the deformation behaviors of elastic solids with cracks subjected to thermomechanical loads in the framework of ordinary state-based peridynamics. Based on principle of virtual work, a nonlocal energy approach is developed to recast the solution to peridynamic equilibrium equation as a problem of minimizing the potential energy of the system, which automatically satisfies the traction-free boundary conditions. Meanwhile, the energy representation of physical system can be treated as the loss function for machine learning methods. Therefore, a nonlocal energy-informed neural network is constructed to approximate the solution of the system. A distinct advantage of the proposed neural network is that the strain energy is expressed in terms of spatial integration instead of spatial derivatives, which avoids the invalidation of automatic differentiation at the crack surfaces in original physics-informed neural networks. To demonstrate the convergence and accuracy of the proposed neural network, a series of problems in solid and fracture mechanics are conducted, and compared with results from analytical solutions or classical numerical methods. Additionally, for elastic material containing initial cracks, displacement extrapolation method is encoded into the proposed neural network to evaluate the static stress intensity factor.
© 2023 John Wiley & Sons, Ltd.

MSC:

74S99 Numerical and other methods in solid mechanics
74R10 Brittle fracture
74B05 Classical linear elasticity
74F05 Thermal effects in solid mechanics
74G70 Stress concentrations, singularities in solid mechanics
74A70 Peridynamics
74G65 Energy minimization in equilibrium problems in solid mechanics
68T07 Artificial neural networks and deep learning
Full Text: DOI

References:

[1] BrancoR, AntunesFV, CostaJD. A review on 3D‐FE adaptive remeshing techniques for crack growth modelling. Eng. Fract. Mech.2015;141:170‐195. doi:10.1016/j.engfracmech.2015.05.023
[2] SukumarN, MoësN, MoranB, BelytschkoT. Extended finite element method for three‐dimensional crack modelling. Int J Numer Methods Eng. 2000;48(11):1549‐1570. doi:10.1002/1097‐0207(20000820)48:11<1549::AID‐NME955>3.0.CO;2‐A · Zbl 0963.74067
[3] deBorstR. Fracture and damage in quasi‐brittle materials: a comparison of approaches. Theor. Appl. Fract. Mech.2022;122:103652. doi:10.1016/j.tafmec.2022.103652
[4] SillingSA. Reformulation of elasticity theory for discontinuities and long‐range forces. J Mech Phys Solids. 2000;48(1):175‐209. doi:10.1016/S0022‐5096(99)00029‐0 · Zbl 0970.74030
[5] SillingSA, EptonM, WecknerO, XuJ, AskariE. Peridynamic states and constitutive modeling. J. Elast.2007;88(2):151‐184. doi:10.1007/s10659‐007‐9125‐1 · Zbl 1120.74003
[6] RenH, ZhuangX, RabczukT. A nonlocal operator method for solving partial differential equations. Comput Methods Appl Mech Eng. 2020;358:112621. doi:10.1016/j.cma.2019.112621 · Zbl 1441.35250
[7] ZhouXP, YuXL. A vector form conjugated‐shear bond‐based peridynamic model for crack initiation and propagation in linear elastic solids. Eng. Fract. Mech.2021;256:107944. doi:10.1016/j.engfracmech.2021.107944
[8] WangY, ZhouX, WangY, ShouY. A 3‐D conjugated bond‐pair‐based peridynamic formulation for initiation and propagation of cracks in brittle solids. Int J Solids Struct. 2018;134:89‐115. doi:10.1016/j.ijsolstr.2017.10.022
[9] ZhuQ, ZhiNT. Peridynamic formulations enriched with bond rotation effects. Int J Eng Sci. 2017;121:118‐129. doi:10.1016/j.ijengsci.2017.09.004 · Zbl 1423.74072
[10] ZhengG, ShenG, XiaY, HuP. A bond‐based peridynamic model considering effects of particle rotation and shear influence coefficient. Int J Numer Methods Eng. 2020;121(1):93‐109. doi:10.1002/nme.6189 · Zbl 07841254
[11] DianaV, CasoloS. A bond‐based micropolar peridynamic model with shear deformability: elasticity, failure properties and initial yield domains. Int. J. Solids Struct.2019;160:201‐231. doi:10.1016/j.ijsolstr.2018.10.026
[12] LeQV, ChanWK, SchwartzJ. A two‐dimensional ordinary, state‐based peridynamic model for linearly elastic solids. Int J Numer Methods Eng. 2014;98(8):547‐561. doi:10.1002/nme.4642 · Zbl 1352.74040
[13] ImachiM, TanakaS, OzdemirM, BuiTQ, OterkusS, OterkusE. Dynamic crack arrest analysis by ordinary state‐based peridynamics. Int. J. Fract.2020;221(2):155‐169. doi:10.1007/s10704‐019‐00416‐3
[14] RenH, ZhuangX, CaiY, RabczukT. Dual‐horizon peridynamics. Int J Numer Methods Eng. 2016;108(12):1451‐1476. doi:10.1002/nme.5257 · Zbl 07870047
[15] BreitenfeldMS, GeubellePH, WecknerO, SillingSA. Non‐ordinary state‐based peridynamic analysis of stationary crack problems. Comput Methods Appl Mech Eng. 2014;272:233‐250. doi:10.1016/j.cma.2014.01.002 · Zbl 1296.74099
[16] YaghoobiA, ChorzepaMG. Higher‐order approximation to suppress the zero‐energy mode in non‐ordinary state‐based peridynamics. Comput Struct. 2017;188:63‐79. doi:10.1016/j.compstruc.2017.03.019
[17] WangH, XuY, HuangD. A non‐ordinary state‐based peridynamic formulation for thermo‐visco‐plastic deformation and impact fracture. Int J Mech Sci. 2019;159:336‐344. doi:10.1016/j.ijmecsci.2019.06.008
[18] RahimiMN, KefalA, YildizM, OterkusE. An ordinary state‐based peridynamic model for toughness enhancement of brittle materials through drilling stop‐holes. Int. J. Mech. Sci.2020;182:105773. doi:10.1016/j.ijmecsci.2020.105773
[19] ZhouXP, ShouYD, BertoF. Analysis of the plastic zone near the crack tips under the uniaxial tension using ordinary state‐based peridynamics. Fatigue Fract Eng Mater Struct. 2018;41(5):1159‐1170. doi:10.1111/ffe.12760
[20] DelormeR, TabiaiI, Laberge LebelL, LévesqueM. Generalization of the ordinary state‐based peridynamic model for isotropic linear viscoelasticity. Mech Time‐Dependent Mater. 2017;21(4):549‐575. doi:10.1007/s11043‐017‐9342‐3
[21] LiS, LuH, HuangX, YangJ, SunP. Numerical simulation of crack propagation and coalescence in marine cast iron materials using ordinary state‐based peridynamics. Ocean Eng. 2022;266:112812. doi:10.1016/j.oceaneng.2022.112812
[22] YangZ, YangS‐Q, ChenM. Peridynamic simulation on fracture mechanical behavior of granite containing a single fissure after thermal cycling treatment. Comput Geotech. 2020;120:103414. doi:10.1016/j.compgeo.2019.103414
[23] LiX, YuY, MuZ, HuYL. Meso‐scale modeling for effective properties in continuous fiber‐reinforced composites by state‐based Peridynamics. Acta Mech Solida Sin. 2021;34(5):729‐742. doi:10.1007/S10338‐021‐00239‐7
[24] RaissiM, KarniadakisGE. Hidden physics models: machine learning of nonlinear partial differential equations. J Comput Phys. 2018;357:125‐141. doi:10.1016/j.jcp.2017.11.039 · Zbl 1381.68248
[25] RaissiM, YazdaniA, KarniadakisGE. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science (80‐).2020;367(6481):1026‐1030. doi:10.1126/science.aaw4741 · Zbl 1478.76057
[26] MargossianCCC. A review of automatic differentiation and its efficient implementation. Wiley Interdiscip. Rev. Data min Knowl Discov. 2019;9(4):e1305. doi:10.1002/widm.1305
[27] Güneş BaydinA, PearlmutterBA, Andreyevich RadulA, MarkSJ. Automatic differentiation in machine learning: a survey. J Mach Learn Res. 2018;18:1‐43. · Zbl 06982909
[28] GaoH, SunL, WangJX. Super‐resolution and denoising of fluid flow using physics‐informed convolutional neural networks without high‐resolution labels. Phys Fluids. 2021;33(7):073603. doi:10.1063/5.0054312
[29] BorkowskiL, SoriniC, ChattopadhyayA. Recurrent neural network‐based multiaxial plasticity model with regularization for physics‐informed constraints. Comput. Struct.2022;258:106678. doi:10.1016/j.compstruc.2021.106678
[30] RanadeR, HillC, PathakJ. DiscretizationNet: a machine‐learning based solver for Navier-stokes equations using finite volume discretization. Comput Methods Appl Mech Eng. 2021;378:113722. doi:10.1016/j.cma.2021.113722 · Zbl 1506.76115
[31] GaoH, SunL, WangJX. PhyGeoNet: physics‐informed geometry‐adaptive convolutional neural networks for solving parameterized steady‐state PDEs on irregular domain. J Comput Phys. 2021;428:110079. doi:10.1016/J.JCP.2020.110079 · Zbl 07511433
[32] ChiuP‐H, WongJC, OoiC, DaoMH, OngY‐S. CAN‐PINN: a fast physics‐informed neural network based on coupled‐automatic-numerical differentiation method. Comput Methods Appl Mech Eng. 2022;395:114909. doi:10.1016/j.cma.2022.114909 · Zbl 1507.65204
[33] QiuR, HuangR, XiaoY, et al. Physics‐informed neural networks for phase‐field method in two‐phase flow. Phys Fluids. 2022;34(5):052109. doi:10.1063/5.0091063
[34] MahmoudabadbozchelouM, KarniadakisGE, JamaliS. Nn‐PINNs: non‐Newtonian physics‐informed neural networks for complex fluid modeling. Soft Matter. 2022;18(1):172‐185. doi:10.1039/d1sm01298c
[35] GuoS, AgarwalM, CooperC, et al. Machine learning for metal additive manufacturing: towards a physics‐informed data‐driven paradigm. J Manuf Syst. 2022;62:145‐163. doi:10.1016/j.jmsy.2021.11.003
[36] HeX, ChenJ‐S. Thermodynamically consistent machine‐learned internal state variable approach for data‐driven modeling of path‐dependent materials. Comput Methods Appl Mech Eng. 2022;402:115348. doi:10.1016/j.cma.2022.115348 · Zbl 1507.74007
[37] Carranza‐AbaidA, SvendsenHF, JakobsenJP. Thermodynamically consistent vapor‐liquid equilibrium modelling with artificial neural networks. Fluid Phase Equilib. 2023;564:113597. doi:10.1016/j.fluid.2022.113597
[38] KarimpouliS, TahmasebiP. Physics informed machine learning: seismic wave equation. Geosci Front. 2020;11(6):1993‐2001. doi:10.1016/j.gsf.2020.07.007
[39] SongC, LiuY, ZhaoP, ZhaoT, ZouJ, LiuC. Simulating multi‐component elastic seismic wavefield using deep learning. IEEE Geosci Remote Sens Lett. 2023;20:1‐5. doi:10.1109/LGRS.2023.3250522
[40] AlmajidMM, Abu‐Al‐SaudMO. Prediction of porous media fluid flow using physics informed neural networks. J Petrol Sci Eng. 2022;208:109205. doi:10.1016/j.petrol.2021.109205
[41] ZhangE, DaoM, KarniadakisGE, SureshS. Analyses of internal structures and defects in materials using physics‐informed neural networks. Sci Adv. 2022;8(7):eabk0644. doi:10.1126/sciadv.abk0644
[42] BaekJ, ChenJ‐S, SusukiK. A neural network‐enhanced reproducing kernel particle method for modeling strain localization. Int J Numer Methods Eng. 2022;123(18):4422‐4454. doi:10.1002/nme.7040 · Zbl 07768033
[43] KarniadakisGE, KevrekidisIG, LuL, PerdikarisP, WangS, YangL. Physics‐informed machine learning. Nat Rev Phys. 2021;3(6):422‐440. doi:10.1038/S42254‐021‐00314‐5
[44] LuL, MengX, MaoZ, KarniadakisGE. DeepXDE: a deep learning library for solving differential equations. SIAM Rev. 2021;63(1):208‐228. doi:10.1137/19M1274067 · Zbl 1459.65002
[45] CaiS, MaoZ, WangZ, YinM, KarniadakisGE. Physics‐informed neural networks (PINNs) for fluid mechanics: a review. Acta Mech Sin Xuebao. 2021;37(12):1727‐1738. doi:10.1007/S10409‐021‐01148‐1
[46] CuomoS, Di ColaVS, GiampaoloF, RozzaG, RaissiM, PiccialliF. Scientific machine learning through physics-informed neural networks: where we are and What’s next. J Sci Comput. 2022;92(3):62‐88. doi:10.1007/s10915‐022‐01939‐z · Zbl 07568980
[47] HaghighatE, RaissiM, MoureA, GomezH, JuanesR. A physics‐informed deep learning framework for inversion and surrogate modeling in solid mechanics. Comput Methods Appl Mech Eng. 2021;379:113741. doi:10.1016/j.cma.2021.113741 · Zbl 1506.74476
[48] AbueiddaDW, LuQ, KoricS. Meshless physics‐informed deep learning method for three‐dimensional solid mechanics. Int. J. Numer. Methods Eng.2021;122(23):7182‐7201. doi:10.1002/nme.6828 · Zbl 07863835
[49] WangJ‐J, WangC, FanJ‐S, MoYL. A deep learning framework for constitutive modeling based on temporal convolutional network. J Comput Phys. 2022;449:110784. doi:10.1016/j.jcp.2021.110784 · Zbl 07524781
[50] BaiJ, RabczukT, GuptaA, AlzubaidiL, GuY. A physics‐informed neural network technique based on a modified loss function for computational 2D and 3D solid mechanics. Comput Mech. 2023;71(3):543‐562. doi:10.1007/s00466‐022‐02252‐0 · Zbl 1521.74404
[51] SamaniegoE, AnitescuC, GoswamiS, et al. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput Methods Appl Mech Eng. 2020;362:112790. doi:10.1016/j.cma.2019.112790 · Zbl 1439.74466
[52] GoswamiS, AnitescuC, ChakrabortyS, RabczukT. Transfer learning enhanced physics informed neural network for phase‐field modeling of fracture. Theor Appl Fract Mech. 2020;106:102447. doi:10.1016/j.tafmec.2019.102447
[53] ZhengB, LiT, QiH, GaoL, LiuX, YuanL. Physics‐informed machine learning model for computational fracture of quasi‐brittle materials without labelled data. Int. J. Mech. Sci.2022;223:107282. doi:10.1016/j.ijmecsci.2022.107282
[54] HaghighatE, BekarAC, MadenciE, JuanesR. A nonlocal physics‐informed deep learning framework using the peridynamic differential operator. Comput Methods Appl Mech Eng. 2021;385:114012. doi:10.1016/j.cma.2021.114012 · Zbl 1502.65172
[55] ZhangH, QiaoP. A two‐dimensional ordinary state‐based peridynamic model for elastic and fracture analysis. Eng Fract Mech. 2020;232:107040. doi:10.1016/j.engfracmech.2020.107040
[56] GaoY, OterkusS. Ordinary state‐based peridynamic modelling for fully coupled thermoelastic problems. Contin Mech Thermodyn. 2019;31(4):907‐937. doi:10.1007/s00161‐018‐0691‐1
[57] WangY, ZhouX, KouM. An improved coupled thermo‐mechanic bond‐based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks. Eur J Mech A/Solids. 2019;73:282‐305. doi:10.1016/j.euromechsol.2018.09.007 · Zbl 1406.74615
[58] KilicB, MadenciE. Peridynamic theory for thermomechanical analysis. IEEE Trans Adv Packag. 2010;33(1):97‐105. doi:10.1109/TADVP.2009.2029079
[59] HanF, LubineauG, AzdoudY, AskariA. A morphing approach to couple state‐based peridynamics with classical continuum mechanics. Comput Methods Appl Mech Eng. 2016;301:336‐358. doi:10.1016/j.cma.2015.12.024 · Zbl 1425.74079
[60] ChenZ, BobaruF. Selecting the kernel in a peridynamic formulation: a study for transient heat diffusion. Comput Phys Commun. 2015;197:51‐60. doi:10.1016/j.cpc.2015.08.006
[61] GuX, MadenciE, ZhangQ. Revisit of non‐ordinary state‐based peridynamics. Eng. Fract. Mech.2018;190:31‐52. doi:10.1016/j.engfracmech.2017.11.039
[62] SelesonP, ParksML. On the role of the influence function in the peridynamic theory. Int J Multiscale Comput Eng. 2011;9(6):689‐706. doi:10.1615/IntJMultCompEng.2011002527
[63] ZhangT, ZhouX, QianQ. The peridynamic Drucker‐Prager plastic model with fractional order derivative for the numerical simulation of tunnel excavation. Int J Numer Anal Methods Geomech. 2022;46(9):1620‐1659. doi:10.1002/nag.3361
[64] SillingSA. Linearized theory of peridynamic states. J Elast. 2010;99(1):85‐111. doi:10.1007/s10659‐009‐9234‐0 · Zbl 1188.74008
[65] YuXL, ZhouXP. A data‐driven bond‐based peridynamic model derived from group method of data handling neural network with genetic algorithm. Int J Numer Methods Eng. 2022;123(22):5618‐5651. doi:10.1002/nme.7081 · Zbl 07769290
[66] AbadiM, BarhamP, ChenJ, et al. TensorFlow: a system for large‐scale machine learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016. USENIX Association; 2016:265‐283.
[67] PaszkeA, GrossS, MassaF, et al. PyTorch: an imperative style, high‐performance deep learning library. Adv Neural Inf Process Syst. 2019;32:8024‐8035.
[68] XiangZ, PengW, LiuX, YaoW. Self‐adaptive loss balanced physics‐informed neural networks. Neurocomputing. 2022;496:11‐34. doi:10.1016/j.neucom.2022.05.015
[69] KingmaDP, BaJL. Adam: a method for stochastic optimization. 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc.2015.
[70] DeanJ, CorradoGS, MongaR, et al. Large scale distributed deep networks. Adv. Neural Inf. Process. Syst.2012;2:1223‐1231.
[71] SillingSA, AskariE. A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct.2005;83(17-18):1526‐1535. doi:10.1016/j.compstruc.2004.11.026
[72] ParksML, LehoucqRB, PlimptonSJ, SillingSA. Implementing peridynamics within a molecular dynamics code. Comput Phys Commun. 2008;179(11):777‐783. doi:10.1016/j.cpc.2008.06.011 · Zbl 1197.82014
[73] LeQV, BobaruF. Surface corrections for peridynamic models in elasticity and fracture. Comput. Mech.2018;61(4):499‐518. doi:10.1007/s00466‐017‐1469‐1 · Zbl 1446.74084
[74] SelesonP. Improved one‐point quadrature algorithms for two‐dimensional peridynamic models based on analytical calculations. Comput Methods Appl Mech Eng. 2014;282:184‐217. doi:10.1016/j.cma.2014.06.016 · Zbl 1423.74143
[75] WeinanE, YuB. The deep Ritz method: a deep learning‐based numerical algorithm for solving variational problems. Commun Math Stat. 2018;6(1):1‐12. doi:10.1007/s40304‐018‐0127‐z · Zbl 1392.35306
[76] HaYD, BobaruF. Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract.2010;162(1-2):229‐244. doi:10.1007/s10704‐010‐9442‐4 · Zbl 1425.74416
[77] ScabbiaF, ZaccariottoM, GalvanettoU. A novel and effective way to impose boundary conditions and to mitigate the surface effect in state‐based Peridynamics. Int J Numer Methods Eng. 2021;122(20):5773‐5811. doi:10.1002/nme.6773 · Zbl 07863914
[78] JagtapAD, KawaguchiK, KarniadakisGE. Adaptive activation functions accelerate convergence in deep and physics‐informed neural networks. J Comput Phys. 2020;404:109136. doi:10.1016/j.jcp.2019.109136 · Zbl 1453.68165
[79] StenströmC, ErikssonK. The J‐contour integral in peridynamics via displacements. Int J Fract. 2019;216(2):173‐183. doi:10.1007/s10704‐019‐00351‐3
[80] ScabbiaF, ZaccariottoM, GalvanettoU. A new method based on Taylor expansion and nearest‐node strategy to impose Dirichlet and Neumann boundary conditions in ordinary state‐based Peridynamics. Comput. Mech.2022;70(1):1‐27. doi:10.1007/s00466‐022‐02153‐2 · Zbl 1492.74011
[81] DaiMJ, TanakaS, OterkusS, OterkusE. Static and dynamic mechanical behaviors of cracked Mindlin plates in ordinary state‐based peridynamic framework. Acta Mech. 2022;233(1):299‐316. doi:10.1007/s00707‐021‐03127‐w · Zbl 1525.74134
[82] TadaH, ParisPC, IrwinGR. The stress analysis of cracks. Handbook, Del Res Corp. 1973;34(1973).
[83] AndersonTL. Fracture Mechanics: Fundamentals and Applications. CRC Press; 2017. · Zbl 1360.74001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.