×

A neural network-based enrichment of reproducing kernel approximation for modeling brittle fracture. (English) Zbl 1539.74363

Summary: Numerical modeling of localizations is a challenging task due to the evolving rough solution in which the localization paths are not predefined. Despite decades of efforts, there is a need for innovative discretization-independent computational methods to predict the evolution of localizations. In this work, an improved version of the neural network-enhanced Reproducing Kernel Particle Method (NN-RKPM) is proposed for modeling brittle fracture. In the proposed method, a background reproducing kernel (RK) approximation defined on a coarse and uniform discretization is enriched by a neural network (NN) approximation under a Partition of Unity framework. In the NN approximation, the deep neural network automatically locates and inserts regularized discontinuities in the function space. The NN-based enrichment functions are then patched together with RK approximation functions using RK as a Partition of Unity patching function. The optimum NN parameters defining the location, orientation, and displacement distribution across location together with RK approximation coefficients are obtained via the energy-based loss function minimization. To regularize the NN-RK approximation, a constraint on the spatial gradient of the parametric coordinates is imposed in the loss function. Analysis of the convergence properties shows that the solution convergence of the proposed method is guaranteed. The NN enrichment allows the modeling of evolving cracks by a fixed coarse RK discretization without adaptive refinement for enhanced computational efficiency. The effectiveness of the proposed method is demonstrated by a series of numerical examples involving damage propagation and branching.

MSC:

74R10 Brittle fracture
74R99 Fracture and damage
74S05 Finite element methods applied to problems in solid mechanics

References:

[1] Barron, A. R., Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory., 930-945 (1993) · Zbl 0818.68126
[2] Calin, O., Deep learning architectures (2020), Springer · Zbl 1441.68001
[3] Mozaffar, M.; Bostanabad, R.; Chen, W.; Ehmann, K.; Cao, J.; Bessa, M. A., Deep learning predicts path-dependent plasticity. Proc. Natl. Acad. Sci., 26414-26420 (2019)
[4] He, Q.; Chen, J.-S., A physics-constrained data-driven approach based on locally convex reconstruction for noisy database. Comput. Methods Appl. Mech. Eng. (2020) · Zbl 1436.62725
[5] Wu, L.; Nguyen, V. D.; Kilingar, N. G.; Noels, L., A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths. Comput. Methods Appl. Mech. Eng. (2020) · Zbl 1506.74453
[6] He, X.; He, Q.; Chen, J.-S., Deep autoencoders for physics-constrained data-driven nonlinear materials modeling. Comput. Methods Appl. Mech. Eng. (2021) · Zbl 1502.74109
[7] Abueidda, D. W.; Koric, S.; Sobh, N. A.; Sehitoglu, H., Deep learning for plasticity and thermo-viscoplasticity. Int. J. Plast. (2021)
[8] He, X.; Chen, J.-S., Thermodynamically consistent machine-learned internal state variable approach for data-driven modeling of path-dependent materials. Comput. Methods Appl. Mech. Eng. (2022) · Zbl 1507.74007
[9] Lee, K.; Carlberg, K. T., Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J. Comput. Phys. (2020) · Zbl 1454.65184
[10] Kim, Y.; Choi, Y.; Widemann, D.; Zohdi, T., A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder. J. Comput. Phys. (2022) · Zbl 07517153
[11] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys., 686-707 (2019) · Zbl 1415.68175
[12] Haghighat, E.; Raissi, M.; Moure, A.; Gomez, H.; Juanes, R., A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Comput. Methods Appl. Mech. Eng. (2021) · Zbl 1506.74476
[13] Taneja, K.; He, X.; He, Q.; Zhao, X.; Lin, Y.-A.; Loh, K. J.; Chen, J.-S., A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems. J. Biomech. Eng. (2022)
[14] Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T., Arbitrary branched and intersecting cracks with the extended finite element method. Int. J. Numer. Methods Eng., 1741-1760 (2000) · Zbl 0989.74066
[15] Sukumar, N.; Moës, N.; Moran, B.; Belytschko, T., Extended finite element method for three-dimensional crack modelling. Int. J. Numer. Methods Eng., 1549-1570 (2000) · Zbl 0963.74067
[16] Duarte, C. A.; Hamzeh, O. N.; Liszka, T. J.; Tworzydlo, W. W., A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput. Methods Appl. Mech. Eng., 2227-2262 (2001) · Zbl 1047.74056
[17] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng., 601-620 (1999) · Zbl 0943.74061
[18] Dolbow, J.; Moës, N.; Belytschko, T., Discontinuous enrichment in finite elements with a partition of unity method. Finite Elem. Anal. Des., 235-260 (2000) · Zbl 0981.74057
[19] Organ, D.; Fleming, M.; Terry, T.; Belytschko, T., Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. Mech., 225-235 (1996) · Zbl 0864.73076
[20] Sukumar, N.; Moran, B.; Black, T.; Belytschko, T., An element-free Galerkin method for three-dimensional fracture mechanics. Comput. Mech., 170-175 (1997) · Zbl 0888.73066
[21] P, B. Z.; Milan, J., Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress. J. Eng. Mech., 1119-1149 (2002)
[22] Mindlin, R. D., Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct., 417-438 (1965)
[23] Aifantis, E. C., On the Microstructural Origin of Certain Inelastic Models. J. Eng. Mater. Technol., 326-330 (1984)
[24] De Borst, R.; Mühlhaus, H.-B., Gradient-dependent plasticity: Formulation and algorithmic aspects. Int. J. Numer. Methods Eng., 521-539 (1992) · Zbl 0768.73019
[25] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng., 2765-2778 (2010) · Zbl 1231.74022
[26] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng., 1273-1311 (2010) · Zbl 1202.74014
[27] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R.; Landis, C. M., A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng., 77-95 (2012) · Zbl 1253.74089
[28] Geelen, R. J.M.; Liu, Y.; Hu, T.; Tupek, M. R.; Dolbow, J. E., A phase-field formulation for dynamic cohesive fracture. Comput. Methods Appl. Mech. Eng., 680-711 (2019) · Zbl 1440.74359
[29] Samaniego, E.; Anitescu, C.; Goswami, S.; Nguyen-Thanh, V. M.; Guo, H.; Hamdia, K.; Zhuang, X.; Rabczuk, T., An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput. Methods Appl. Mech. Eng. (2020) · Zbl 1439.74466
[30] Zhang, L.; Cheng, L.; Li, H.; Gao, J.; Yu, C.; Domel, R.; Yang, Y.; Tang, S.; Liu, W. K., Hierarchical deep-learning neural networks: finite elements and beyond. Comput. Mech., 207-230 (2021) · Zbl 07360501
[31] Lu, L.; Jin, P.; Pang, G.; Zhang, Z.; Karniadakis, G. E., Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell., 218-229 (2021)
[32] Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G. E., DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Rev, 208-228 (2021) · Zbl 1459.65002
[33] Baek, J.; Chen, J.-S.; Susuki, K., A neural network-enhanced reproducing kernel particle method for modeling strain localization. Int. J. Numer. Methods Eng., 4422-4454 (2022) · Zbl 07768033
[34] Haghighat, E.; Juanes, R., SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks. Comput. Methods Appl. Mech. Eng. (2021) · Zbl 1506.65251
[35] Almajid, M. M.; Abu-Al-Saud, M. O., Prediction of porous media fluid flow using physics informed neural networks. J. Pet. Sci. Eng. (2022)
[36] Haghighat, E.; Amini, D.; Juanes, R., Physics-informed neural network simulation of multiphase poroelasticity using stress-split sequential training. Comput. Methods Appl. Mech. Eng. (2022) · Zbl 1507.74119
[37] Chen, T.; Chen, H., Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans. Neural Networks., 911-917 (1995)
[38] Shen, B.; Stephansson, O., Modification of the G-criterion for crack propagation subjected to compression. Eng. Fract. Mech., 177-189 (1994)
[39] Hu, H.-Y.; Chen, J.-S.; Hu, W., Error analysis of collocation method based on reproducing kernel approximation. Numer. Methods Partial Differ. Equ., 554-580 (2011) · Zbl 1223.65091
[40] Chen, J.-S.; Wu, C.-T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng., 435-466 (2001) · Zbl 1011.74081
[41] Wei, H.; Chen, J. S., A damage particle method for smeared modeling of brittle fracture. Int. J. Multiscale Comput. Eng., 303-324 (2018)
[42] Kingma, D. P.; Ba, J., Adam: A Method for Stochastic Optimization
[43] Nocedal, J.; Wright, S. J., Large-Scale Unconstrained Optimization. Numer. Optim., 164-192 (2006), Springer New York: Springer New York New York, NY · Zbl 1104.65059
[44] Chen, J.-S.; Zhang, X.; Belytschko, T., An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput. Methods Appl. Mech. Eng., 2827-2844 (2004) · Zbl 1067.74564
[45] Patil, R. U.; Mishra, B. K.; Singh, I. V., An adaptive multiscale phase field method for brittle fracture. Comput. Methods Appl. Mech. Eng., 254-288 (2018) · Zbl 1439.74368
[46] Muixí, A.; Rodríguez-Ferran, A.; Fernández-Méndez, S., A hybridizable discontinuous Galerkin phase-field model for brittle fracture with adaptive refinement. Int. J. Numer. Methods Eng., 1147-1169 (2020) · Zbl 07843241
[47] Muixí, A.; Marco, O.; Rodríguez-Ferran, A.; Fernández-Méndez, S., A combined XFEM phase-field computational model for crack growth without remeshing. Comput. Mech., 231-249 (2021) · Zbl 07360502
[48] Bobet, A.; Einstein, H. H., Numerical modeling of fracture coalescence in a model rock material. Int. J. Fract., 221-252 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.