×

An atomistic-continuum multiscale analysis for heterogeneous nanomaterials and its application in nanoporous gold foams. (English) Zbl 1503.74095


MSC:

74Q05 Homogenization in equilibrium problems of solid mechanics
74A25 Molecular, statistical, and kinetic theories in solid mechanics

Software:

Voro++
Full Text: DOI

References:

[1] Hull, D.; Bacon, D. J., Introduction to Dislocations (2011), Butterworth-Heinemann
[2] Smith, W. F.; Hashemi, J.; Presuel-Moreno, F., Foundations of Materials Science and Engineering (2006), Mcgraw-Hill Publishing
[3] Salehinia, I.; Medyanik, S. N., Effects of vacancies on the onset of plasticity in metals – an atomistic simulation study, Metall. Mater. Trans. A, 42, 3868-3874 (2011)
[4] Liu, J. X., Analysis of surface effects on the deformation of a nano-void in an elasto-plastic material, Appl. Math. Model., 39, 5091-5104 (2015) · Zbl 1443.74079
[5] Leach, A. R., Molecular Modelling: Principles and Applications (2001), Prentice-Hall
[6] Chang, W. J., Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading, Microelectron. Eng., 65, 239-246 (2003)
[7] Guo, Y.; Zhuang, Z.; Li, X. Y.; Chen, Z., An investigation of the combined size and rate effects on the mechanical responses of FCC metals, Int. J. Solids Struct., 44, 1180-1195 (2007) · Zbl 1144.74006
[8] Salehinia, I.; Bahr, D. F., Mechanical behavior of FCC single crystals at finite temperatures in the presence of point defects, Mater. Sci. Eng. A, 588, 340-346 (2013)
[9] McDowell, D. L., A perspective on trends in multiscale plasticity, Int. J. Plast., 26, 1280-1309 (2010) · Zbl 1402.74022
[10] Wallin, M.; Curtin, W. A.; Ristinmaa, M.; Needleman, A., Multiscale plasticity modeling: coupled discrete dislocation and continuum crystal plasticity, J. Mech. Phys. Solids, 56, 3167-3180 (2008) · Zbl 1172.74011
[11] Yang, P.; Zhang, L.; Tang, Y.; Gong, J.; Zhao, Y.; Yang, J., An atomic-continuum multiscale modeling approach for interfacial thermal behavior between materials, Appl. Math. Model., 38, 3373-3379 (2014)
[12] Lyu, D.; Li, S., Multiscale crystal defect dynamics: a coarse-grained lattice defect model based on crystal microstructure, J. Mech. Phys. Solids, 107, 379-410 (2017) · Zbl 1442.74052
[13] Lim, H. J.; Choi, H.; Zhu, F.; Kerekes, T. W.; Yun, G. J., Multiscale damage plasticity modeling and inverse characterization for particulate composites, Mech. Mater., 149, Article 103564 pp. (2020)
[14] Wang, X.; Qi, H.; Sun, Z.; Bi, J.; Hu, L.; Yang, J.; Li, D., A multiscale discrete-continuum mosaic method for nonlinear mechanical behaviors of periodic micro/nanoscale structures, Appl. Math. Model., 93, 376-394 (2021) · Zbl 1481.74596
[15] Jafari, R.; Farzin, M.; Mashayekhi, M.; Banabic, D., A microstructure-based constitutive model for superplastic forming, Metall. Mater. Trans. A, 43, 4266-4280 (2012)
[16] Shenoy, M.; Tjiptowidjojo, Y.; McDowell, D., Microstructure-sensitive modeling of poly-crystalline IN 100, Int. J. Plast., 24, 1694-1730 (2008) · Zbl 1207.74028
[17] Groh, S.; Marin, E. B.; Horstemeyer, M. F.; Zbib, H. M., Multiscale modeling of the plasticity in an aluminum single crystal, Int. J. Plast., 25, 1456-1473 (2009) · Zbl 1165.74013
[18] Santana, H. B.; Thiesen, J. L.M.; de Medeiros, R.; Ferreira, A. J.M.; Ramos, R. R.; Tita, V., Multiscale analysis for predicting the constitutive tensor effective coefficients of layered composites with micro and macro failures, Appl. Math. Model., 75, 250-266 (2019) · Zbl 1481.74644
[19] Tadmor, EB; Phillips, R.; Ortiz, M., Mixed atomistic and continuum models of deformations in solids, Langmuir, 12, 4529-4534 (1996)
[20] Miller, R. E.; Tadmor, E. B., The quasi-continuum method: overview, applications and current directions, J. Comput. Aided Mater. Des., 9, 203-239 (2002)
[21] Abraham, F. F.; Broughton, J. Q.; Bernstein, N.; Kaxiras, E., Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture, Europhys. Lett., 44, 783-787 (1998)
[22] Wagner, G. J.; Liu, W. K., Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys., 190, 249-274 (2003) · Zbl 1169.74635
[23] Liu, W. K.; Park, H. S.; Qian, D.; Karpov, E. G.; Kadowaki, H.; Wagner, G. J., Bridging scale methods for nanomechanics and materials, Comput. Methods Appl. Mech. Eng., 195, 1407-1421 (2006) · Zbl 1116.74048
[24] Khoei, A. R.; Aramoon, A.; Jahanbakhshi, F.; DorMohammadi, H., A concurrent multiscale modeling for dynamic behavior of nano-crystalline structures, Comput. Mater. Sci., 79, 841-856 (2013)
[25] Khoei, A. R.; Jahanbakhshi, F.; Aramoon, A., A concurrent multiscale technique in modeling heterogeneous FCC nano-crystalline structures, Mech. Mater., 83, 40-65 (2015)
[26] Miehe, C.; Koch, A., Computational micro-to-macro transitions of discretized microstructures undergoing small strains, Arch. Appl. Mech., 72, 300-317 (2002) · Zbl 1032.74010
[27] Toro, S.; Sánchez, P. J.; Huespe, A. E.; Giusti, S. M.; Blanco, P. J.; Feijóo, R. A., A two-scale failure model for heterogeneous materials: numerical implementation based on the finite element method, Int. J. Numer. Methods Eng., 97, 313-351 (2014) · Zbl 1352.74028
[28] Nguyen, V. P.; Stroeven, M.; Sluys, L. J., Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments, J. Multiscale Model., 3, 1-42 (2011)
[29] Ericksen, J. L., The Cauchy and Born hypotheses for crystals, (Gurtin, M., Phase Transformations and Material Instabilities in Solids (1984)), 61-77 · Zbl 0567.73112
[30] Aghaei, A.; Qomi, M. J.A.; Kazemi, M. T.; Khoei, A. R., Stability and size-dependency of Cauchy-Born hypothesis in three-dimensional applications, International Journal of Solids and Structures, 46, 1925-1936 (2009) · Zbl 1217.74010
[31] Khoei, A. R.; Qomi, M. J.A.; Kazemi, M. T.; Aghaei, A., An investigation on the validity of Cauchy-Born hypothesis using Sutton-Chen many-body potential, Comput. Mater. Sci., 44, 999-1006 (2009)
[32] Khoei, A. R.; Ghahremani, P.; Qomi, M. J.A.; Banihashemi, P., Stability and size-dependency of temperature-related Cauchy-Born hypothesis, Comput. Mater. Sci., 50, 1731-1743 (2011)
[33] Sunyk, R.; Steinmann, P., Transition to plasticity in continuum-atomistic modeling, Multidiscip. Model. Mater. Struct., 2, 249-286 (2006)
[34] Khoei, A. R.; Jahanshahi, M., Multiscale modeling of plastic deformations in nanoscale materials; transition to plastic limit, Int. J. Numer. Methods Eng., 109, 1180-1216 (2017) · Zbl 07874341
[35] Khoei, A. R.; Jahanshahi, M.; Toloui, G., Validity of Cauchy-Born hypothesis in multiscale modeling of plastic deformations, Int. J. Solids Struct., 115, 224-247 (2017)
[36] Khoei, A. R.; Rezaei, A., A computational model for atomistic-based higher-order continua using the FEM technique, Finite Elem. Anal. Des., 137, 26-39 (2017)
[37] Khoei, A. R.; Rezaei, A.; Nikravesh, Y., A continuum-atomistic multiscale technique for nonlinear behavior of nanomaterials, Int. J. Mech. Sci., 148, 191-208 (2018)
[38] Miehe, C.; Schröder, J.; Becker, M., Computational homogenization analysis in finite elasticity: material and structural instabilities on the micro-and macro-scales of periodic composites and their interaction, Comput. Methods Appl. Mech. Eng., 191, 4971-5005 (2002) · Zbl 1099.74517
[39] Luscher, D. J.; McDowell, D. L.; Bronkhorst, C. A., A second gradient theoretical framework for hierarchical multiscale modeling of materials, Int. J. Plast., 26, 1248-1275 (2010) · Zbl 1436.74005
[40] Li, C.; Li, S.; Yao, L.; Zhu, Z., Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models, Appl. Math. Model., 39, 4570-4585 (2015) · Zbl 1443.74212
[41] Nejat, H.; Golzari, A., A temperature-calibrated continuum model for vibrational analysis of the fullerene family using molecular dynamics simulations, Appl. Math. Model., 80, 115-125 (2020) · Zbl 1481.74044
[42] W. Cai, J. Li, S. Yip, Molecular dynamics. In: R.J.M. Konings (Ed.) Comprehensive Nuclear Materials. Elsevier 2012, Vol. 1, pp. 249-265.
[43] Daw, M. S.; Baskes, M. I., Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B, 29, 12-15 (1984)
[44] Foiles, S. M.; Baskes, M. I.; Daw, M. S., Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B, 33, 12-15 (1986)
[45] Plimpton, S., Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1-19 (1995) · Zbl 0830.65120
[46] Shen, S.; Atluri, S. N., Atomic-level stress calculation and continuum-molecular system equivalence, Comput. Model. Eng. Sci., 6, 91-104 (2004) · Zbl 1156.74302
[47] Subramaniyan, A. K.; Sun, C. T., Continuum interpretation of virial stress in molecular simulations, Int. J. Solids Struct., 45, 4340-4346 (2008) · Zbl 1169.74328
[48] Zhu, C.; Lu, Z. P.; Nieh, T. G., Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy, Acta Mater., 61, 2993-3001 (2013)
[49] Lauzier, J.; Hillairet, J.; Champagne, A. V.; Benoit, W.; Gremaud, G., The vacancies, lubrication agents of dislocation motion in aluminum, J. Phys., 1, 9273-9282 (1989)
[50] Lu, G.; Kaxiras, E., Can vacancies lubricate dislocation motion in aluminum?, Phys. Rev. Lett., 89, Article 105501 pp. (2002)
[51] Stukowski, A., A triangulation-based method to identify dislocations in atomistic models, J. Mech. Phys. Solids, 70, 314-319 (2014)
[52] Schiotz, J.; Vegge, T.; Di Tolla, F. D.; Jacobsen, K. W., Atomic-scale simulations of the mechanical deformation of nano-crystalline metals, Phys. Rev. B, 60, 11971 (1999)
[53] Kim, J.; Nizami, A.; Hwangbo, Y.; Jang, B.; Lee, H.; Woo, C.; Hyun, S.; Kim, T., Tensile testing of ultra-thin films on water surface, Nat. Commun., 4, 2520 (2013)
[54] Sun, S.; Chen, X.; Badwe, N.; Sieradzki, K., Potential-dependent dynamic fracture of nanoporous gold, Nat. Mater., 14, 894-898 (2015)
[55] Mameka, N.; Wang, K.; Markmann, J.; Lilleodden, E. T.; Weissmüller, J., Nanoporous gold-testing macro-scale samples to probe small-scale mechanical behavior, Mater. Res. Lett., 4, 27-36 (2016)
[56] Saane, S. S.R.; Mangipudi, K. R.; Loos, K. U.; de Hosson, J. T.M.; Onck, P. R., Multiscale modeling of charge-induced deformation of nanoporous gold structures, J. Mech. Phys. Solids, 66, 1-15 (2014)
[57] Brach, S.; Cherubini, S.; Kondo, D.; Vairo, G., Void-shape effects on strength properties of nanoporous materials, Mech. Res. Commun., 86, 11-17 (2017)
[58] Liao, Y.; Xiang, M.; Li, G.; Wang, K.; Zhang, X.; Chen, J., Molecular dynamics studies on energy dissipation and void collapse in graded nanoporous nickel under shock compression, Mech. Mater., 126, 13-25 (2018)
[59] Li, J.; Zhang, Y.; Tian, C.; Zhou, H.; Hu, G.; Xia, R., Structurally ordered nanoporous Pt-Co alloys with enhanced mechanical behaviors in tension, Microporous Mesoporous Mater., 295, Article 109955 pp. (2020)
[60] Zhou, X.; Wang, L.; Chen, C. Q., Strengthening mechanisms in nanoporous metallic glasses, Comput. Mater. Sci., 155, 151-158 (2018)
[61] Zhou, X.; Chen, C., Atomistic investigation of the intrinsic toughening mechanism in metallic glass, Comput. Mater. Sci., 117, 188-194 (2016)
[62] Biener, J.; Hodge, A. M.; Hamza, A. V., Microscopic failure behavior of nanoporous gold, Appl. Phys. Lett., 87, Article 121908 pp. (2005)
[63] Li, J.; Tian, C.; Hong, W.; Duan, S.; Zhang, Y.; Wu, W.; Hu, G.; Xia, R., Shock responses of nanoporous gold subjected to dynamic loadings: energy absorption, Int. J. Mech. Sci., 192, Article 106191 pp. (2021)
[64] Farkas, D.; Caro, A.; Bringa, E.; Crowson, D., Mechanical response of nanoporous gold, Acta Mater., 61, 3249-3256 (2013)
[65] Huber, N.; Viswanath, R. N.; Mameka, N.; Markmann, J.; Weißmüller, J., Scaling laws of nanoporous metals under uniaxial compression, Acta Mater., 67, 252-265 (2014)
[66] Ruestes, C. J.; Farkas, D.; Caro, A.; Bringa, E. M., Hardening under compression in Au foams, Acta Mater., 108, 1-7 (2016)
[67] Yildiz, O. Y.; Ahadi, A.; Kirca, M., Strain rate effects on tensile and compression behavior of nano-crystalline nanoporous gold: a molecular dynamic study, Mech. Mater., 143, Article 103338 pp. (2020)
[68] Rycroft, C. H., Voro++: a three-dimensional Voronoi cell library in C++, Chaos, 19, Article 041111 pp. (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.