×

A non-oscillatory multi-moment finite volume scheme with boundary gradient switching. (English) Zbl 1376.65118

Summary: In this work we propose a new formulation for high-order multi-moment constrained finite volume (MCV) method. In the one-dimensional building-block scheme, three local degrees of freedom (DOFs) are equidistantly defined within a grid cell. Two candidate polynomials for spatial reconstruction of third-order are built by adopting one additional constraint condition from the adjacent cells, i.e. the DOF at middle point of left or right neighbour. A boundary gradient switching (BGS) algorithm based on the variation-minimization principle is devised to determine the spatial reconstruction from the two candidates, so as to remove the spurious oscillations around the discontinuities. The resulted non-oscillatory MCV3-BGS scheme is of fourth-order accuracy and completely free of case-dependent ad hoc parameters. The widely used benchmark tests of one- and two-dimensional scalar and Euler hyperbolic conservation laws are solved to verify the performance of the proposed scheme in this paper. The MCV3-BGS scheme is very promising for the practical applications due to its accuracy, non-oscillatory feature and algorithmic simplicity.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws

Software:

HE-E1GODF

References:

[1] Chen, C.G., Xiao, F.: An adaptive multimoment global model on a cubed sphere. Mon. Weather Rev. 139, 523-548 (2011) · doi:10.1175/2010MWR3365.1
[2] Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90-113 (1989) · Zbl 0677.65093 · doi:10.1016/0021-9991(89)90183-6
[3] Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411-435 (1989) · Zbl 0662.65083
[4] Fan, P., Shen, Y., Tian, B., Yang, C.: A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. J. Comput. Phys. 269, 329-354 (2014) · Zbl 1349.65290 · doi:10.1016/j.jcp.2014.03.032
[5] Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol. 118. Springer, New York (1996) · Zbl 0860.65075 · doi:10.1007/978-1-4612-0713-9
[6] Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231-303 (1987) · Zbl 0652.65067 · doi:10.1016/0021-9991(87)90031-3
[7] Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications. Springer, New York (2008) · Zbl 1134.65068 · doi:10.1007/978-0-387-72067-8
[8] Huang, C.S., Xiao, F., Arbogast, T.: Fifth order multi-moment weno schemes for hyperbolic conservation laws. J. Sci. Comput. 64(2), 477-507 (2015) · Zbl 1325.65123 · doi:10.1007/s10915-014-9940-z
[9] Ii, S., Xiao, F.: CIP/multi-moment finite volume method for Euler equations, a semiLagrangian characteristic formulation. J. Comput. Phys. 222, 849-871 (2007) · Zbl 1124.76039 · doi:10.1016/j.jcp.2006.08.015
[10] Ii, S., Xiao, F.: High order multi-moment constrained finite volume method. Part I: basic formulation. J. Comput. Phys. 228, 3669-3707 (2009) · Zbl 1166.65371 · doi:10.1016/j.jcp.2009.02.009
[11] Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202-228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[12] Li, X.L., Chen, C.G., Shen, X.S., Xiao, F.: A multi-moment constrained finite-volume model for nonhydrostatic atmospheric dynamics. Mon. Weather Rev. 141, 1216-1240 (2013) · doi:10.1175/MWR-D-12-00144.1
[13] Onodera, N., Aoki, T., Yokoi, K.: A fully conservative high-order upwind multi-moment method using moments in both upwind and downwind cells. Int. J. Numer. Methods Fluids (2016). doi:10.1002/fld.4228 · doi:10.1002/fld.4228
[14] Qiu, J.X., Shu, C.W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case. J. Comput. Phys. 193, 115-135 (2004) · Zbl 1039.65068 · doi:10.1016/j.jcp.2003.07.026
[15] Qiu, J.X., Shu, C.W.: Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907-929 (2005) · Zbl 1077.65109 · doi:10.1137/S1064827503425298
[16] Shu, C.W., Osher, O.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32-78 (1989) · Zbl 0674.65061 · doi:10.1016/0021-9991(89)90222-2
[17] Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shockcapturing schemes. J. Comput. Phys. 77, 439-471 (1988) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[18] Sod, G.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1-31 (1978) · Zbl 0387.76063 · doi:10.1016/0021-9991(78)90023-2
[19] Spiteri, R., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469-491 (2002) · Zbl 1020.65064 · doi:10.1137/S0036142901389025
[20] Sun, Y., Wang, Z.J., Liu, Y.: High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys. 2, 310-333 (2007) · Zbl 1164.76360
[21] Sun, Z.Y., Teng, H.H., Xiao, F.: A slope constrained 4th order multi-moment finite volume method with WENO limiter. Commun. Comput. Phys. 18, 901-930 (2015) · Zbl 1373.76147 · doi:10.4208/cicp.081214.250515s
[22] Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edn. Springer, Berlin (2009) · Zbl 1227.76006 · doi:10.1007/b79761
[23] Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation. J. Comput. Phys. 178, 210-251 (2002) · Zbl 0997.65115 · doi:10.1006/jcph.2002.7041
[24] Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115-173 (1984) · Zbl 0573.76057 · doi:10.1016/0021-9991(84)90142-6
[25] Xiao, F., Yabe, T.: Completely conservative and oscillationless semi-Lagrangian schemes for advection transportation. J. Comput. Phys. 170, 498-522 (2001) · Zbl 0984.65086 · doi:10.1006/jcph.2001.6746
[26] Xie, B., Ii, S., Ikebata, A., Xiao, F.: A multi-moment finite volume method for incompressible Navier-Stokes equations on unstructured grids: volume-average/point-value formulation. J. Comput. Phys. 227, 138-162 (2014) · Zbl 1349.76409 · doi:10.1016/j.jcp.2014.08.011
[27] Xie, B., Xiao, F.: Two and three dimensional multi-moment finite volume solver for incompressible Navier-Stokes equations on unstructured grids with arbitrary quadrilateral and hexahedral elements. Comput. Fluids 227, 40-54 (2014) · Zbl 1391.76448 · doi:10.1016/j.compfluid.2014.08.002
[28] Yabe, T., Aoki, T.: A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solver. Comput. Phys. Commun. 66, 219-232 (1991) · Zbl 0991.65521 · doi:10.1016/0010-4655(91)90071-R
[29] Yabe, T., Xiao, F., Utsumi, T.: The constrained interpolation profile method for multiphase analysis. J. Comput. Phys. 169, 556-593 (2001) · Zbl 1047.76104 · doi:10.1006/jcph.2000.6625
[30] Zhong, X., Shu, C.W.: A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys. 232, 397-415 (2013) · doi:10.1016/j.jcp.2012.08.028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.