×

Arcwise connectedness of the set of ergodic measures of hereditary shifts. (English) Zbl 1390.37006

The authors review some basic facts from the spectral theory of Koopman operators defined by \(U_T(f)=f\circ T\) such that \(U_T:L^2(X,\mu)\rightarrow L^2(X,\mu)\). Then they describe the spectrum for rotations and characterize the ergodicity of the product of two transformations via their spectra. The authors prove that for every ergodic measure-preserving system \((X, T, \mu)\) there exists an irrational \(\alpha\) such that \((\mathbb{T}^1,R_{\alpha}, \lambda)\) and \((X, T, \mu)\) are disjoint. The main result of paper is given as follows: if \(X\) is a shift space with a safe symbol (in particular, if \(X\) is a hereditary shift) and \(t \geq 0\), then \(\mathcal{M}^{(t)} _{\sigma}(X)\) endowed with \(\overline{d}_{\mathcal{M}}\) is arcwise connected. Here \(\mathcal{M}^{(t)} _{\sigma}(X)\) is the set of ergodic measures on \(X\) with entropy less than or equal to \(t\), that is, \(\mathcal{M}^{(t)}_{\sigma}(X)=\{\mathcal{M}^{e}_{\sigma}(X):h(\mu)\leq t\}\) and \(h(\mu)\) is the metric entropy function. Furthermore the authors prove that if \(X\) is a shift space with a safe symbol (in particular, if \(X\) is a hereditary shift), then \(\{h(\mu) : \mu \in \mathcal{M}^{e}_{\sigma}(X)\} = [0, h_{\operatorname{top}}(X)]\) (possibly degenerate to a point). The authors present some notable examples of hereditary shifts to which the main result can be applied. The authors prove that for every Polish topological space \(P\) there exists a minimal shift space \(X\) such that \(\mathcal{M}^{e}_{\sigma}(X)\) with the weak\(^{*}\) topology and \(P\) are homeomorphic and there is a unique measure \(\mu \in \mathcal{M}^{e}_{\sigma}(X)\) with positive metric entropy.

MSC:

37A05 Dynamical aspects of measure-preserving transformations
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
37B10 Symbolic dynamics
37B40 Topological entropy
54H20 Topological dynamics (MSC2010)

References:

[1] El Abdalaoui, El Houcein; Lema\'nczyk, Mariusz; de la Rue, Thierry, A dynamical point of view on the set of \(\mathcal{B} \)-free integers, Int. Math. Res. Not. IMRN, 16, 7258-7286 (2015) · Zbl 1341.37002
[2] Avdeeva M. Avdeeva, Variance of \(\mathscrB \)-free integers in short intervals, preprint, 2015, arXiv:1512.00149 [math.DS] · Zbl 1067.16039
[3] Banks, John; Nguyen, Thi T. D.; Oprocha, Piotr; Stanley, Brett; Trotta, Belinda, Dynamics of spacing shifts, Discrete Contin. Dyn. Syst., 33, 9, 4207-4232 (2013) · Zbl 1283.37015
[4] Banks, John; Oprocha, Piotr; Stanley, Brett, Transitive sofic spacing shifts, Discrete Contin. Dyn. Syst., 35, 10, 4743-4764 (2015) · Zbl 1366.37020
[5] BKKPL A. Bartnicka, S. Kasjan, J. Kuaga-Przymus, and M. Lema\'nczyk, \( \mathscrB \)-free sets and dynamics, Trans. Amer. Math. Soc., AMS Early View version, DOI https://doi.org/10.1090/tran/7132.
[6] Cellarosi, F.; Sinai, Ya. G., Ergodic properties of square-free numbers, J. Eur. Math. Soc. (JEMS), 15, 4, 1343-1374 (2013) · Zbl 1325.37010
[7] VC Vaughn Climenhaga’s Math Blog (accessed on September 26, 2016). http://vaughnclimenhaga.wordpress.com/2012/04/18/a-useful-example-for-the-space-\linebreak of-ergodic-measures/
[8] Climenhaga, Vaughn; Thompson, Daniel J., Intrinsic ergodicity beyond specification: \( \beta \)-shifts, \(S\)-gap shifts, and their factors, Israel J. Math., 192, 2, 785-817 (2012) · Zbl 1279.37011
[9] Downarowicz, Tomasz, The Choquet simplex of invariant measures for minimal flows, Israel J. Math., 74, 2-3, 241-256 (1991) · Zbl 0746.58047
[10] Downarowicz, Tomasz; Serafin, Jacek, Possible entropy functions, Israel J. Math., 135, 221-250 (2003) · Zbl 1054.37004
[11] Downarowicz, Tomasz, Entropy in dynamical systems, New Mathematical Monographs 18, xii+391 pp. (2011), Cambridge University Press, Cambridge · Zbl 1220.37001
[12] Einsiedler, Manfred; Ward, Thomas, Ergodic theory with a view towards number theory, Graduate Texts in Mathematics 259, xviii+481 pp. (2011), Springer-Verlag London, Ltd., London · Zbl 1206.37001
[13] Furstenberg, Harry, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1, 1-49 (1967) · Zbl 0146.28502
[14] Furstenberg, H., Recurrence in ergodic theory and combinatorial number theory, xi+203 pp. (1981), M. B. Porter Lectures, Princeton University Press, Princeton, N.J. · Zbl 0459.28023
[15] GK K. Gelfert and D. Kwietniak, On density of ergodic measures and generic points, Ergodic Theory Dynam. Systems, FirstView, DOI: 10.1017/etds.2016.97 · Zbl 1403.37021
[16] Glasner, Eli, Ergodic theory via joinings, Mathematical Surveys and Monographs 101, xii+384 pp. (2003), American Mathematical Society, Providence, RI · Zbl 1038.37002
[17] Haydon, Richard, A new proof that every Polish space is the extreme boundary of a simplex, Bull. London Math. Soc., 7, 97-100 (1975) · Zbl 0302.46003
[18] Katok, Anatole, Nonuniform hyperbolicity and structure of smooth dynamical systems. Proceedings of the International Congress of Mathematicians, Vol.1, 2, Warsaw, 1983, 1245-1253 (1984), PWN, Warsaw · Zbl 0563.58016
[19] Katok, Anatole; Hasselblatt, Boris, Introduction to the modern theory of dynamical systems, with a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Mathematics and its Applications 54, xviii+802 pp. (1995), Cambridge University Press, Cambridge · Zbl 0878.58020
[20] Kerr, David; Li, Hanfeng, Independence in topological and \(C^*\)-dynamics, Math. Ann., 338, 4, 869-926 (2007) · Zbl 1131.46046
[21] Ku\l aga-Przymus, Joanna; Lema\'nczyk, Mariusz; Weiss, Benjamin, On invariant measures for \(\mathcal{B} \)-free systems, Proc. Lond. Math. Soc. (3), 110, 6, 1435-1474 (2015) · Zbl 1353.37017
[22] Ku\l aga-Przymus, Joanna; Lema\'nczyk, Mariusz; Weiss, Benjamin, Hereditary subshifts whose simplex of invariant measures is Poulsen. Ergodic theory, dynamical systems, and the continuing influence of John C. Oxtoby, Contemp. Math. 678, 245-253 (2016), Amer. Math. Soc., Providence, RI · Zbl 1364.37031
[23] Lau, Kenneth; Zame, Alan, On weak mixing of cascades, Math. Systems Theory, 6, 307-311 (1972/73) · Zbl 0247.28010
[24] Lindenstrauss, J.; Olsen, G.; Sternfeld, Y., The Poulsen simplex, Ann. Inst. Fourier (Grenoble), 28, 1, vi, 91-114 (1978) · Zbl 0363.46006
[25] Kwietniak, Dominik, Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts, Discrete Contin. Dyn. Syst., 33, 6, 2451-2467 (2013) · Zbl 1271.37013
[26] Parry, William, Topics in ergodic theory, Cambridge Tracts in Mathematics 75, x+110 pp. (2004), Cambridge University Press, Cambridge · Zbl 1096.37001
[27] Peckner, Ryan, Uniqueness of the measure of maximal entropy for the squarefree flow, Israel J. Math., 210, 1, 335-357 (2015) · Zbl 1352.37024
[28] Quas, Anthony; \c Sahin, Ay\c se A., Entropy gaps and locally maximal entropy in \(\mathbb{Z}^d\) subshifts, Ergodic Theory Dynam. Systems, 23, 4, 1227-1245 (2003) · Zbl 1039.37008
[29] Quas, Anthony; Soo, Terry, Ergodic universality of some topological dynamical systems, Trans. Amer. Math. Soc., 368, 6, 4137-4170 (2016) · Zbl 1354.37010
[30] R\'enyi, A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar, 8, 477-493 (1957) · Zbl 0079.08901
[31] Robinson, E. Arthur, Jr.; \c Sahin, Ay\c se A., On the absence of invariant measures with locally maximal entropy for a class of \(\mathbf{Z}^d\) shifts of finite type, Proc. Amer. Math. Soc., 127, 11, 3309-3318 (1999) · Zbl 0934.28011
[32] Rudolph, Daniel J., Fundamentals of measurable dynamics, Ergodic theory on Lebesgue spaces, Oxford Science Publications, x+168 pp. (1990), The Clarendon Press, Oxford University Press, New York · Zbl 0718.28008
[33] Sarnak P. Sarnak, Three lectures on the M\"obius function randomness and dynamics (Lecture 1), http://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf. · Zbl 0527.10022
[34] Shields, Paul C., The ergodic theory of discrete sample paths, Graduate Studies in Mathematics 13, xii+249 pp. (1996), American Mathematical Society, Providence, RI · Zbl 0879.28031
[35] Shinoda M. Shinoda, Ergodic maximizing measures of non-generic, yet dense continuous functions, preprint, arXiv:1704.05616 [math.DS], 2017. · Zbl 1394.37054
[36] Srivastava, S. M., A course on Borel sets, Graduate Texts in Mathematics 180, xvi+261 pp. (1998), Springer-Verlag, New York · Zbl 0903.28001
[37] Stanley, Brett, Bounded density shifts, Ergodic Theory Dynam. Systems, 33, 6, 1891-1928 (2013) · Zbl 1283.37021
[38] Sun, Peng, Zero-entropy invariant measures for skew product diffeomorphisms, Ergodic Theory Dynam. Systems, 30, 3, 923-930 (2010) · Zbl 1202.37010
[39] Sun, Peng, Measures of intermediate entropies for skew product diffeomorphisms, Discrete Contin. Dyn. Syst., 27, 3, 1219-1231 (2010) · Zbl 1192.37036
[40] Ures, Ra\'ul, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part, Proc. Amer. Math. Soc., 140, 6, 1973-1985 (2012) · Zbl 1258.37033
[41] Weiss, Benjamin, Single orbit dynamics, CBMS Regional Conference Series in Mathematics 95, x+113 pp. (2000), American Mathematical Society, Providence, RI · Zbl 1083.37500
[42] Willard, Stephen, General topology, xii+369 pp. (1970), Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. · Zbl 1052.54001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.