×

Self-duality and Harada rings. (English) Zbl 0926.16019

A left Artinian ring is a left \(H\)-ring (Harada ring) [M. Harada, Ring Theory, Proc. 1978 Antwerp Conf., Lect. Notes Pure Appl. Math. 51, 669-689 (1979; Zbl 0449.16018), K. Oshiro, Math. J. Okayama Univ. 31, 161-178, 179-188 (1989; Zbl 0706.16009, Zbl 0734.16007), ibid. 32, 111-118 (1990; Zbl 0734.16008)] in case its basic ring \(R\) has the following property: If \(T=\{e_1,\dots,e_n\}\) is a complete set of orthogonal primitive idempotents of \(R\) and \(N=\text{rad}(R)\), then the \(e_i\) can be enumerated such that: \(T=\{e_{11},\dots,e_{1s_1},\dots,e_{m1},\dots,e_{ms_m}\}\), where (i) \(Re_{i1}\) is an injective \(R\)-module for \(i=1,\dots,m\), (ii) \(Ne_{i,j-1}\cong Re_{ij}\) for \(i=1,\dots,m\); \(j=2,\dots,s_i\). In particular, quasi-Frobenius rings and Nakayama rings are \(H\)-rings.
In the paper the question is studied, whether every \(H\)-ring has a selfduality, and it is shown that this question is equivalent to the question whether every Frobenius ring has a Nakayama automorphism. In more detail: Let \(E_i=E(Re_i/Ne_i)\) be the injective envelope of the simple module \(Re_i/Ne_i\) and \(E=\bigoplus_i E_i\). Let \(T=T(R)=\text{End}_R(E)\) and \(f_i\) is the unit element of the local ring \(\text{End}_R(E_i)\subset T\). If there exists an isomorphism \(\varphi\colon R\to T\), such that \(\varphi(e_i)=f_i\), \(\varphi\) is called a Nakayama isomorphism. In case \(R\) is a basic Frobenius ring, \(T\) can be identified with \(R\), hence \(\varphi\) is an automorphism of \(R\) if it exists, and is called a Nakayama automorphism of \(R\).
The result of the paper now is: The following conditions are equivalent: (i) For every basic left \(H\)-ring \(R\) there exists a Nakayama isomorphim \(\varphi\colon R\to T(R)\). (ii) Every (basic) Frobenius ring has a Nakayama automorphism. (iii) Every basic left \(H\)-ring has a selfduality. – The corresponding assertion holds, if in (i) and (iii) \(H\)-ring is replaced by Nakayama ring and in (iii) Frobenius ring by Frobenius and Nakayama ring.

MSC:

16L60 Quasi-Frobenius rings
16D90 Module categories in associative algebras
16P20 Artinian rings and modules (associative rings and algebras)
Full Text: DOI

References:

[1] Amdal, I. K.; Ringdal, F., Categories uniserialles, C. R. Acad. Sci. Paris Sér. A, 267, 85-87 (1968) · Zbl 0159.02201
[2] Azumaya, G., A duality theory for injective modules, Amer. J. Math., 81, 249-278 (1959) · Zbl 0088.03304
[3] Baba, Y.; Iwase, K., On quasi-Harada rings, J. Algebra, 185, 544-570 (1996) · Zbl 0862.16013
[4] Faith, C., Algebra II, Ring Theory (1976), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0335.16002
[5] Fuller, K. R., Generalized uniserial rings and their Kupisch series, Math. Z., 106, 248-260 (1968) · Zbl 0172.04605
[6] Fuller, K. R., On indecomposable injectives over artinian rings, Pacific J. Math., 29, 115-135 (1969) · Zbl 0182.05702
[7] Haack, J. K., Self-duality and serial rings, J. Algebra, 59, 345-363 (1979) · Zbl 0444.16012
[8] M. Harada, Non-small modules and non-cosmall modules, in; M. Harada, Non-small modules and non-cosmall modules, in · Zbl 0449.16018
[9] Harada, M., Almost \(QF J^3\), Osaka J. Math., 30, 893-908 (1993) · Zbl 0807.16004
[10] Harada, M., AlmostQFQF, Osaka J. Math., 30, 887-892 (1993) · Zbl 0807.16003
[11] Kado, J., The maximal quotient ring of a left \(H\), Osaka J. Math., 27, 247-251 (1990) · Zbl 0708.16007
[12] Kupisch, H., A characterization of Nakayama rings, Comm. Algebra, 23, 739-741 (1995) · Zbl 0821.16019
[13] T. Mano, The invariant systems of serial rings and their applications to the theory of self-duality, in; T. Mano, The invariant systems of serial rings and their applications to the theory of self-duality, in · Zbl 0524.16006
[14] Morita, K., Duality for modules and its applications to the theory of rings with minimal conditions, Sci. Rep. Tokyo Kyoiku Daigaku Sec., A6, 83-142 (1958) · Zbl 0080.25702
[15] Müller, B. J., On Morita duality, Canad. J. Math., 21, 1338-1347 (1969) · Zbl 0198.36202
[16] Müller, W., Unzerlegbaren Moduln über artinschen Ringen, Math. Z., 137, 197-226 (174) · Zbl 0268.16022
[17] Murase, I., On the structure of generalized uniserial rings I, Sci. Papers College Ge. Ed. Univ. Tokyo, 13, 1-22 (1963) · Zbl 0122.28701
[18] Murase, I., On the structure of generalized uniserial rings II, Sci. Papers College Ge. Ed. Univ. Tokyo, 13, 131-158 (1963) · Zbl 0122.28701
[19] Murase, I., On the structure of generalized uniserial rings III, Sci. Papers College Ge. Ed. Univ. Tokyo, 14, 14-25 (1964) · Zbl 0215.38304
[20] Nakayama, T., Note on uniserial and generalized uniserial rings, Proc. Imperial Acad. Japan, 16, 285-289 (1940) · JFM 66.0104.02
[21] Nakayama, T., On Frobeniusian algebras II, Ann. Math., 42, 1-21 (1941) · JFM 67.0092.04
[22] Oshiro, K., Lifting modules, extending modules and their applications toQF, Hokkaido Math. J., 13, 310-338 (1984) · Zbl 0559.16013
[23] Oshiro, K., Lifting modules, extending modules and their applications to generalized uniserial rings, Hokkaido Math. J., 13, 339-346 (1984) · Zbl 0559.16012
[24] Oshiro, K., On Harada rings I, Math J. Okayama Univ., 31, 161-178 (1989) · Zbl 0706.16009
[25] Oshiro, K., On Harada rings II, Math. J. Okayama Univ., 31, 179-188 (1989) · Zbl 0734.16007
[26] Oshiro, K., On Harada rings III, Math. J. Okayama Univ., 32, 111-118 (1990) · Zbl 0734.16008
[27] Oshiro, K.; Shigenaga, K., On \(H\), Math. J. Okayama Univ., 31, 189-196 (1989) · Zbl 0704.16011
[28] Sumioka, T.; Tozaki, S., On almostQF, Osaka J. Math., 33, 649-661 (1996) · Zbl 0879.16007
[29] Waschbüsch, J., Self-duality of serial rings, Comm. Algebra, 14, 581-589 (1986) · Zbl 0592.16018
[30] Yamagata, K., Frobenius algebra, Handbook of Algebra (1996), Elsevier: Elsevier Amsterdam/New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.