×

Wavelet basis expansion-based spatio-temporal Volterra kernels identification for nonlinear distributed parameter systems. (English) Zbl 1331.42037

Summary: In practical industries, there are many systems belong to nonlinear distributed parameter systems (DPS); unfortunately, modeling of nonlinear DPS is a challenging task because of the infinite-dimensional and nonlinear properties. To model the nonlinear DPS, a spatio-temporal Volterra model is presented with a series of spatio-temporal kernels. It can be considered as a spatial extension of the traditional Volterra model. One question involved in modeling a spatio-temporal functional relationship between the input and output of nonlinear distributed parameter systems using spatio-temporal Volterra series is to identify the spatio-temporal Volterra kernel functions. In addition, in order to derive a low-order model, the Karhunen-Loève (KL) decomposition is used for the time/space separation. The basic routine of the approach is that, first, from the system outputs, KL decomposition is used for the time/space separation, where the spatio-temporal output is decomposed into a few dominant spatial basis functions with temporal coefficients. Second, according to temporal coefficients of outputs under multilevel excitations, the Volterra series outputs of different orders are estimated with the wavelet balance method. Third, the Volterra kernel functions of different orders are separately estimated through their corresponding Volterra series outputs by expanding them with four-order B-spline wavelet on the interval (BSWI). Finally, the spatio-temporal Volterra model can be reconstructed using the time/space synthesis. The simulation studies verify the effectiveness of the presented identification method.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
41A15 Spline approximation
93B30 System identification
37M05 Simulation of dynamical systems
Full Text: DOI

References:

[1] Nayfeh, A.H., Balachandran, B.: Appllied Nonlinear Dynamics. Wiley, New York (1995) · Zbl 0848.34001 · doi:10.1002/9783527617548
[2] Huan, S., Li, Q., Yang, X.S.: Chaos in three-dimensional hybrid systems and design of chaos generators. Nonlinear Dyn. 69, 1915-1927 (2012) · Zbl 1263.34078 · doi:10.1007/s11071-012-0396-0
[3] Perc, M., Marhl, M.: Chaos in temporarily destabilized regular systems with the slow passage effect. Chaos, Solitons Fractals 27, 395-403 (2006) · Zbl 1149.92300 · doi:10.1016/j.chaos.2005.03.045
[4] Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2004) · Zbl 1050.62093
[5] Perc, M.: The dynamics of human gait. Eur. J. Phys. 26, 525-534 (2005) · Zbl 1063.92004 · doi:10.1088/0143-0807/26/3/017
[6] Perc, M.: Nonlinear time series analysis of the human electrocardiogram. Eur. J. Phys. 26, 757-768 (2005) · doi:10.1088/0143-0807/26/5/008
[7] Rafei, M., Van Horssen, W.T.: Solving systems of nonlinear difference equations by the multiple scales perturbation method. Nonlinear Dyn. 69, 1509-1516 (2012) · Zbl 1263.39019 · doi:10.1007/s11071-012-0365-7
[8] Li, S.B., Zhang, W., Gao, L.J.: Perturbation analysis in parametrically excited two-degree-of-freedom systems with quadratic and cubic nonlinearities. Nonlinear Dyn. 71, 175-185 (2013) · Zbl 1268.34088 · doi:10.1007/s11071-012-0649-y
[9] Eigoli, A.K., Vossoughi, G.R.: Dynamic analysis of microrobots with Coulomb friction using harmonic balance method. Nonlinear Dyn. 67, 1357-1371 (2012) · doi:10.1007/s11071-011-0073-8
[10] Coca, D., Billings, S.A.: Direct parameter identification of distributed parameter systems. Int. J. Soc. Syst. Sci. 31, 11-17 (2000) · Zbl 1080.93531 · doi:10.1080/002077200291406
[11] Deng, H., Li, H.X., Chen, G.: Spectral-approximation-based intelligent modeling for distributed thermal processes. IEEE Trans. Control Syst. Technol. 13, 686-700 (2005) · doi:10.1109/TCST.2005.847329
[12] Guo, L.Z., Billings, S.A., Wei, H.L.: Estimation of spatial derivatives and identification of continuous spatio-temporal dynamical systems. Int. J. Control 79, 1118-1135 (2006) · Zbl 1125.93333 · doi:10.1080/00207170600804050
[13] Liu, J.J.: A new GUI interpretation tool for the non-linear frequency response function. J. Frankl. Inst. 339, 431-454 (2002) · Zbl 1010.93531 · doi:10.1016/S0016-0032(02)00026-1
[14] Billings, S.A., Guo, L.Z., Wei, H.L.: Identification of coupled map lattice models for spatio-temporal patterns using wavelets. Int. J. Syst. Sci. 37, 1021-1038 (2006) · Zbl 1109.92001 · doi:10.1080/00207720600963015
[15] Zheng, D., Hoo, K.A., Piovoso, M.J.: Low-order model identification of distributed parameter systems by a combination of singular value decomposition and the Karhunen-Loève expansion. Ind. Eng. Chem. Res. 41, 1545-1556 (2002) · doi:10.1021/ie0102899
[16] Li, H.X., Qi, C.K., Yu, Y.: A spatio-temporal Volterra modeling approach for a class of distributed industrial processes. J. Process Control 19, 1126-1142 (2009) · doi:10.1016/j.jprocont.2009.02.005
[17] Li, H.X., Qi, C.K.: Modeling of distributed parameter systems for applications—A synthesized review from time-space separation. J. Process Control 20, 891-901 (2010) · doi:10.1016/j.jprocont.2010.06.016
[18] Qi, C.K., Li, H.X.: A time/space separation-based Hammerstein modeling approach for nonlinear distributed parameter processes. Comput. Chem. Eng. 331, 247-1260 (2009)
[19] Rugh, W.J.: Nonlinear System Theory: The Volterra-Wiener Approach. Johns Hopkins University Press, Baltimore (1980) · Zbl 0666.93065
[20] Schetzen, M.: The Volterra and Wiener Theories of Nonlinear Systems. Wiley, New York (1980) · Zbl 0501.93002
[21] Butkovskiy, A.G.: Green’s Functions and Transfer Functions Handbook, 1st edn. Ellis Horwood, Chichester (1982) · Zbl 0554.34019
[22] Omran, A., Newman, B.: Piecewise global Volterra nonlinear modeling and characterization for aircraft dynamics. J. Guid. Control Dyn. 32, 749-759 (2009) · doi:10.2514/1.40655
[23] Pacheco, R.P., Steffen Jr, V.: On the identification of non-linear mechanical systems using orthogonal functions. Int. J. Non Linear Mech. 39, 1147-1159 (2004) · Zbl 1348.74054 · doi:10.1016/S0020-7462(03)00112-4
[24] Prazenica, R.J., Kurdila, A.J.: Multiwavelet constructions and Volterra kernel identification. Nonlinear Dyn. 43, 277-310 (2006) · Zbl 1138.93324 · doi:10.1007/s11071-006-8323-x
[25] Prazenica, R.J., Reisenthel, P.H., Kurdila, A.J.: Volterra kernel extrapolation for modeling nonlinear aeroelastic systems at novel flight conditions. J. Aircr. 44, 149-162 (2007) · doi:10.2514/1.22764
[26] Datta, K.B., Mohan, B.M.: Orthogonal Functions in Systems and Control. World Scientific, Singapore (1995) · Zbl 0866.93003 · doi:10.1142/2476
[27] Lenaerts, V., Kerschen, G., Golinval, J.C.: Identification of a continuous structure with a geometrical non-linearity. Part II: proper orthogonal decomposition. J. Sound. Vib. 262, 907-919 (2003) · doi:10.1016/S0022-460X(02)01132-X
[28] Qi, C.K., Li, H.X.: A Karhunen-Loève decomposition-based Wiener modeling approach for nonlinear distributed parameter processes. Ind. Eng. Chem. Res. 47, 4184-4192 (2008) · doi:10.1021/ie0710869
[29] GlÖsmann, P.: Nonlinear system analysis with Karhunen-Loève transform. Nonlinear Dyn. 41, 111-128 (2005) · Zbl 1111.70019 · doi:10.1007/s11071-005-2794-z
[30] Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, New York (1998) · Zbl 0923.76002
[31] Marmarelis, V.Z.: Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann. Biomed. Eng. 21, 573-589 (1993) · doi:10.1007/BF02368639
[32] Wang, X.L., Jiang, Y.L.: Model reduction of bilinear systems based on Laguerre series expansion. J. Frankl. Inst. 349, 1231-1246 (2012) · Zbl 1273.93034 · doi:10.1016/j.jfranklin.2012.01.009
[33] Moodi, H., Bustan, D.: On identification of nonlinear systems using Volterra kernels expansion on Laguerre and wavelet function. 2010 Chinese Control and Decision Conference. 1141-1145 (2010) · Zbl 1010.93531
[34] Da Rosa, A., Campello, R.J.G.B., Amaral, W.C.: Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions. Automatica 43, 1084-1091 (2007) · Zbl 1282.93089 · doi:10.1016/j.automatica.2006.12.007
[35] Nikolaou, M., Mantha, D.: Efficient nonlinear modeling using wavelets and related compression techniques. NSF Workshop on Nonlinear Model Predictive Control, (1998) · Zbl 0958.93008
[36] Chou, K.C., Guthart, G.S.: Representation of Green’s function integral operators using wavelet transforms. J. Vib. Control 6, 19-48 (2000) · Zbl 0949.65512 · doi:10.1177/107754630000600102
[37] Wei, H.L., Billings, S.A., Balikhin, M.A.: Wavelet based non-parametric NARX models for nonlinear input-output system identification. Int. J. Syst. Sci. 37, 1089-1096 (2006) · Zbl 1129.93361
[38] Cheng, C.M., Peng, Z.K., Zhang, W.M.: Wavelet basis expansion based Volterra kernel function identification through multilevel excitations. Nonlinear Dyn. 76, 985-999 (2014) · Zbl 1306.42055 · doi:10.1007/s11071-013-1182-3
[39] Deng, Y., Shi, Y.B., Zhang, W.: An approach to locate parametric faults in nonlinear analog circuits. IEEE Trans. Instrum. Meas. 61, 358-367 (2012) · doi:10.1109/TIM.2011.2161930
[40] Li, X., Bo, H., Ling, X., et al.: A wavelet-balance approach for steady-state analysis of nonlinear circuits. IEEE Trans. Circuits Syst. I 49, 689-694 (2002) · Zbl 1368.93519 · doi:10.1109/TCSI.2002.801242
[41] Xiang, J.W., Chen, X.F., He, Z.J., et al.: A new wavelet-based thin plate element using B-spline wavelet on the interval. Comput. Mech. 41, 243-255 (2008) · Zbl 1162.74480
[42] Xiang, J.W., Chen, X.F., Li, B., et al.: Identification of a crack in a beam based on the finite element method of a B-spline wavelet on the interval. J. Sound Vib. 296, 1046-1052 (2006) · doi:10.1016/j.jsv.2006.02.019
[43] Cohen, A.: Numerical Analysis of Wavelet Methods. Elsevier Science Ltd, Kidlington (2003) · Zbl 1038.65151
[44] Nayfeh, A.H., Lacarbonara, W.: On the discretization of spatially continuous systems with quadratic and cubic nonlinearities. JSME Int. J. Ser. C, Mech. Syst., Mach. Elem. Manuf. 41, 510-531 (1998) · doi:10.1299/jsmec.41.510
[45] Nayfeh, A.H., Lacarbonara, W.: On the discretization of distributed-parameter systems with quadratic and cubic nonlinearities. Nonlinear Dyn. 13, 203-220 (1997) · Zbl 0879.73030 · doi:10.1023/A:1008253901255
[46] Prazenica, R.J., Kurdila, A.J.: Volterra kernel identification using triangular wavelets. J. Vib. Control 10, 597-622 (2004) · Zbl 1078.93019 · doi:10.1177/1077546304038269
[47] Peng, Z.K., Lang, Z.Q., Wolters, C., et al.: Feasibility study of structural damage detection using NARMAX modelling and nonlinear output frequency response function based analysis. Mech. Syst. Signal Process. 25, 1045-1061 (2011) · doi:10.1016/j.ymssp.2010.09.014
[48] Chen, L.Q., Lim, C.W., Hu, Q.Q.: Asymptotic analysis of a vibrating cantilever with a nonlinear boundary. Sci. China Ser. G 52, 1414-1422 (2009) · Zbl 1194.93051 · doi:10.1007/s11433-009-0185-z
[49] Turner, J.A.: Non-linear vibrations of a beam with cantilever-Hertzian contact boundary conditions. J. Sound Vib. 275, 177-191 (2004)
[50] Galvanetto, U., Violaris, G.: Numerical investigation of a new damage detection method based on proper orthogonal decomposition. Mech. Syst. Signal Process. 21, 1346-1361 (2007) · doi:10.1016/j.ymssp.2005.12.007
[51] Galvanetto, U., Surace, C., Tassotti, A.: Structural damage detection based on proper orthogonal decomposition: experimental verification. AIAA J. 46, 1624-1630 (2008) · doi:10.2514/1.30191
[52] Azeez, M.F.A., Vakakis, A.F.: Proper orthogonal decomposition (POD) of a class of vibroimpact oscillations. J. Sound Vib. 240, 859-889 (2001) · doi:10.1006/jsvi.2000.3264
[53] Liang, Y.C., Lee, H.P., Lim, S.P.: Proper orthogonal decomposition and its applications—Part I: theory. J. Sound Vib. 252, 527-544 (2002) · Zbl 1237.65040 · doi:10.1006/jsvi.2001.4041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.