×

Two-step MPC for systems with input non-linearly and norm-bounded disturbance. (English) Zbl 1434.93051

Summary: A novel two-step model predictive control (MPC) for Hammerstein systems subject to norm-bounded disturbance is addressed. In the first step, the intermediate control law for the linear part of the system is posed as the solution to the unconstrained MPC problem that minimises a quadratic cost function over a given finite time, for which the solution is determined by a novel Riccati iterative equation. In the second step, the actual control move is obtained by solving non-linear algebraic equation group and desaturation. The quadratic boundedness technique is used to specify the stability for closed-loop system with norm-bounded disturbance, and the sufficient conditions for quadratic convergent of the system state are presented. Simulation results demonstrate the effectiveness of the proposed approach to this class of systems.

MSC:

93C55 Discrete-time control/observation systems
93-08 Computational methods for problems pertaining to systems and control theory
49K21 Optimality conditions for problems involving relations other than differential equations
49N10 Linear-quadratic optimal control problems
Full Text: DOI

References:

[1] MayneD.Q.: ‘Model predictive control: recent developments and future promise’, Automatica, 2014, 50, (12), pp. 2967-2968 · Zbl 1309.93060
[2] KouroS.CortesP., and VargasR.et al.: ‘Model predictive control‐a simple and powerful method to control power converters’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 1826-1838
[3] YuS.QuT., and XuF.et al.: ‘Stability of finitine horizon model predictive control with incremental input constraints’, Automatica, 2017, 79, pp. 265-272 · Zbl 1371.93154
[4] NagyZ.K., and BraatzR.D.: ‘Robust nonlinear model predictive control of batch processes’, Aiche J., 2003, 49, (7), pp. 1776-1786
[5] MagniL., and ScattoliniR.: ‘Model predictive control of continuous‐time nonlinear systems with piecewise constant control’, IEEE Trans. Autom. Control, 2004, 49, (6), pp. 900-906 · Zbl 1365.93215
[6] CuzzolaF.A.GeromelJ.C., and MorariM.: ‘An improved approach for constrained robust model predictive control’, Automatica, 2002, 38, (7), pp. 1183-1189 · Zbl 1010.93042
[7] DingB., and PanH.: ‘Output feedback robust MPC for LPV system with polytopic model parametric uncertainty and bounded disturbance’, Int. J. Control, 2016, 89, (8), pp. 1-26
[8] AlexandridisA., and SarimveisH.: ‘Nonlinear adaptive model predictive control based on self‐correcting neural network models’, Aiche J., 2010, 51, (9), pp. 2495-2506
[9] GautamA., and SohY.C.: ‘Stabilizing model predictive control using parameter‐dependent dynamic policy for nonlinear systems modeled with neural networks’, J. Process Control, 2015, 36, pp. 11-21
[10] IplikciS.: ‘Support vector machines‐based generalized predictive control’, Int. J. Robust Nonlin., 2006, 16, (17), pp. 843-862 · Zbl 1134.93419
[11] KothareM.V.BalakrisnanV., and MorariM.: ‘Robust constrained model predictive control using linear matrix inequalities’, Automatica, 1996, 32, (10), pp. 1361-1379 · Zbl 0897.93023
[12] GautamA.ChuY.C., and SohY.C.: ‘Optimized dynamic policy for receding forizon control of linear time‐varying systems with bounded disturbances’, IEEE Trans. Autom. Control, 2012, 57, (4), pp. 973-988 · Zbl 1369.93340
[13] CasavolaA.FamularoD., and FranzèG.: ‘A fast ellipsoidal MPC scheme for discrete‐time polytopic linear parameter varying systems’, Automatica, 2012, 48, (10), pp. 2620-2626 · Zbl 1271.93056
[14] YanZ.LeX., and WangJ.: ‘Tube‐based robust model predictive control of nonlinear systems via collective neurodynamic optimization’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 4377-4386
[15] BrunnerF.D.HeemelsW.P.M.H., and AllgowerF.: ‘Robust self‐triggered MPC for constrained linear systems’, Automatica, 2016, 72, (1), pp. 73-83 · Zbl 1344.93038
[16] GutjahrB.GröllL., and WerlingM.: ‘Lateral vehicle trajectory optimization using constrained linear time‐varying MPC’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (6), pp. 1686-1595
[17] HlaingY.M.ChiuM.S., and LakshminarayananS.: ‘Modelling and control of multivariable processes using generalized Hammerstein model’, Chem. Eng. Res. Des., 2007, 85, (4), pp. 445-454
[18] HeD.F.JiH.B., and YuL.: ‘Constructive robust model predictive control for constrained non‐linear systems with disturbances’, IET Control Theory A, 2013, 15, (7), pp. 1869-1876
[19] DingB.C., and HuangB.: ‘Output feedback model predictive control for nonlinear systems represented by Hammerstein‐Wiener model’, IET Control Theory A, 2007, 1, (5), pp. 1302-1310
[20] ŁawryńczukM.: ‘On‐line set‐point optimisation and predictive control using neural Hammerstein models’, Chem. Eng. J., 2011, 166, pp. 269-287
[21] KhaniF., and HaeriM.: ‘Robust model predictive control of nonlinear processes represented by Wiener or Hammerstein models’, Chem. Eng. Sci., 2015, 129, pp. 223-231
[22] BenderF.A.GöltzS., and BräunlT.et al.: ‘Modeling and offset‐free model predictive control of a hydraulic mini excavator’, IEEE Trans. Autom. Sci. Eng., 2017, 14, (4), pp. 1682-1694
[23] DingB.C.XiY.G., and LiS.Y.: ‘On the stability of output feedback predictive control for systems with input nonlinearity’, Asian J. Control, 2004, 6, (3), pp. 388-397
[24] WangH.K.ZhaoJ., and XuZ.H.et al.: ‘Model predictive control for Hammerstein systems with unknown input nonlinearities’, Ind. Eng. Chem. Res., 2014, 53, pp. 7714-7722
[25] WangG.WuZ., and XiongJ.: ‘A linear‐quadratic optimal control problem of forward‐backward stochastic differential equations with partial information’, IEEE Trans. Autom. Control, 2015, 60, (11), pp. 2904-2916 · Zbl 1360.93787
[26] OlallaC.LeyvaR., and AroudiA.E.et al.: ‘Robust LQR control for PWM converters: an LMI approach’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 2548-2558
[27] CapronB.D.O., and OdloakD.: ‘An extended linear quadratic regulator with zone control and input targets’, J. Process Control, 2015, 29, pp. 33-44
[28] YuJ., and FuL.: ‘An optimal compensation framework for linear quadratic gaussian control over lossy networks’, IEEE Trans. Autom. Control, 2015, 60, (10), pp. 2692-2697 · Zbl 1360.93792
[29] GoebelR., and SubbotinM.: ‘Continuous time linear quadratic regulator with control constraints via convex duality’, IEEE Trans. Autom. Control, 2007, 52, (5), pp. 886-892 · Zbl 1366.90161
[30] EngwerdaJ., and WeerenA.A.: ‘A result on output feedback linear quadratic control’, Automatica, 2008, 44, (1), pp. 265-271 · Zbl 1139.49032
[31] ZhangH.DuanG., and XieL.: ‘Linear quadratic regulation for linear time‐varying systems with multiple input delays’, Automatica, 2006, 42, (9), pp. 1465-1476 · Zbl 1128.49304
[32] ChenW., and QiuL.: ‘Linear quadratic optimal control of continuous‐time LTI systems with random input gains’, IEEE Trans. Autom. Control, 2016, 61, (7), pp. 2008-2013 · Zbl 1359.93530
[33] PradhanJ.K., and GhoshA.: ‘Multi‐input and multi‐output proportional‐integral‐derivative controller design via linear quadratic regulator‐linear matrix inequality approach’, IET Control Theory A, 2015, 9, (14), pp. 2140-2145
[34] SongX.M., and ParkJ.H.: ‘Linear quadratic regulation problem for discrete‐time systems with multi‐channel multiplicative noise’, Syst. Control Lett., 2016, 89, pp. 74-82 · Zbl 1335.93145
[35] FongJ.TanY., and CrocherV.et al.: ‘Dual‐loop iterative optimal control for the finite horizon LQR problem with unknown dynamics’, Syst. Control Lett., 2018, 111, pp. 49-57 · Zbl 1380.49048
[36] AlessandriA.BagliettoM., and BattistelliG.: ‘On estimation error bounds for receding‐horizon filters using quadratic boundedness’, IEEE Trans. Autom. Control, 2004, 49, pp. 1350-1355 · Zbl 1365.93495
[37] GaoB.HongJ., and YuS.et al.: ‘Linear‐quadratic output regulator with disturbance rejection: application to vehicle launch control’. Proc. American Control Conf., Seattle, USA, May 2017, pp. 1960-1965
[38] SinghA.K., and PalB.C.: ‘An extended linear quadratic regulator for LTI systems with exogenous inputs’, Automatica, 2017, 76, pp. 10-16 · Zbl 1352.93049
[39] TaoJ.MaL., and ZhuY.: ‘Improved control using extended non‐minimal state space MPC and modified LQR for a kind of nonlinear systems’, ISA Trans., 2016, 65, pp. 319-326
[40] NguyenH.N., and GutmanP.O.: ‘Fast constrained LQR based on MPC with linear decomposition’, IEEE Trans. Autom. Control, 2016, 61, (9), pp. 2585-2590 · Zbl 1359.93274
[41] BloemenH.H.J.ChouC.T., and Van Den BoomT.J.J.et al.: ‘Wiener model identification and predictive control for dual composition control of a distillation column’, J. Process Control, 2001, 11, (6), pp. 601-620
[42] DingB.XiY., and LiS.: ‘Stability analysis on predictive control of discrete‐time systems with input nonlinearity’, Acta Automat. Sinica, 2003, 29, (6), pp. 827-834 · Zbl 1498.93500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.