×

Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties. (English) Zbl 1407.05254

Summary: Motivated by questions in algebra and combinatorics we study two ideals associated to a simple graph \(G\):
(i) the Lovász-Saks-Schrijver ideal defining the \(d\)-dimensional orthogonal representations of the graph complementary to \(G\), and
(ii) the determinantal ideal of the \((d+1)\)-minors of a generic symmetric matrix with \(0\) in positions prescribed by the graph \(G\).

In characteristic \(0\) these two ideals turn out to be closely related and algebraic properties such as being radical, prime or a complete intersection transfer from the Lovász-Saks-Schrijver ideal to the determinantal ideal. For Lovász-Saks-Schrijver ideals we link these properties to combinatorial properties of \(G\) and show that they always hold for \(d\) large enough. For specific classes of graphs, such a forests, we can give a complete picture and classify the radical, prime and complete intersection Lovász-Saks-Schrijver ideals.

MSC:

05E40 Combinatorial aspects of commutative algebra
05C62 Graph representations (geometric and intersection representations, etc.)
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)

References:

[1] 10.1016/0021-8693(81)90357-4 · Zbl 0516.13001 · doi:10.1016/0021-8693(81)90357-4
[2] 10.1016/j.ejc.2017.11.004 · Zbl 1384.05094 · doi:10.1016/j.ejc.2017.11.004
[3] 10.4310/MRL.2012.v19.n4.a6 · Zbl 1273.14097 · doi:10.4310/MRL.2012.v19.n4.a6
[4] 10.1007/978-3-642-61698-3 · doi:10.1007/978-3-642-61698-3
[5] 10.1007/978-94-007-1092-4_2 · doi:10.1007/978-94-007-1092-4_2
[6] 10.1007/BFb0080378 · Zbl 0673.13006 · doi:10.1007/BFb0080378
[7] 10.1093/imrn/rnp201 · Zbl 1213.14010 · doi:10.1093/imrn/rnp201
[8] 10.1093/imrn/rnu032 · Zbl 1325.13028 · doi:10.1093/imrn/rnu032
[9] 10.1007/978-3-319-61943-9_5 · Zbl 1406.13009 · doi:10.1007/978-3-319-61943-9_5
[10] 10.4171/JCA/2-3-2 · Zbl 1400.13016 · doi:10.4171/JCA/2-3-2
[11] 10.1016/0001-8708(79)90061-6 · Zbl 0424.14018 · doi:10.1016/0001-8708(79)90061-6
[12] 10.1016/S0001-8708(76)80003-5 · Zbl 0347.20025 · doi:10.1016/S0001-8708(76)80003-5
[13] 10.1016/S0001-8708(81)80004-7 · Zbl 0471.14026 · doi:10.1016/S0001-8708(81)80004-7
[14] 10.1007/978-1-4612-4108-9_8 · doi:10.1007/978-1-4612-4108-9_8
[15] ; Diestel, Graph theory. Graduate Texts in Math., 173 (1997) · Zbl 0873.05001
[16] 10.2307/2374622 · Zbl 0681.14028 · doi:10.2307/2374622
[17] 10.1007/BFb0071278 · doi:10.1007/BFb0071278
[18] 10.2307/1999604 · Zbl 0539.05024 · doi:10.2307/1999604
[19] 10.1016/j.aam.2010.01.003 · Zbl 1196.13018 · doi:10.1016/j.aam.2010.01.003
[20] 10.1016/j.aam.2015.09.009 · Zbl 1322.05098 · doi:10.1016/j.aam.2015.09.009
[21] 10.1016/j.jalgebra.2004.01.027 · Zbl 1073.13007 · doi:10.1016/j.jalgebra.2004.01.027
[22] 10.1016/0021-8693(81)90131-9 · Zbl 0467.13020 · doi:10.1016/0021-8693(81)90131-9
[23] 10.1016/j.jcta.2015.11.004 · Zbl 1328.05087 · doi:10.1016/j.jcta.2015.11.004
[24] ; Landsberg, Tensors: geometry and applications. Graduate Studies in Math., 128 (2012) · Zbl 1238.15013
[25] 10.1016/0024-3795(89)90475-8 · Zbl 0681.05048 · doi:10.1016/0024-3795(89)90475-8
[26] 10.1216/jca-2013-5-1-141 · Zbl 1272.13018 · doi:10.1216/jca-2013-5-1-141
[27] 10.1007/978-1-4757-9286-7_13 · doi:10.1007/978-1-4757-9286-7_13
[28] 10.1080/00927870903527584 · Zbl 1225.13028 · doi:10.1080/00927870903527584
[29] 10.1093/imrn/rnu078 · Zbl 1316.05127 · doi:10.1093/imrn/rnu078
[30] 10.1307/mmj/1008719036 · Zbl 1104.13302 · doi:10.1307/mmj/1008719036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.