×

A restriction estimate for surfaces with negative Gaussian curvatures. (English) Zbl 1533.42013

Summary: We prove \(L^p\) bounds for the Fourier extension operators associated to smooth surfaces in \(\mathbb{R}^3\) with negative Gaussian curvatures for every \(p>3.25\).

MSC:

42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42B05 Fourier series and coefficients in several variables
42B15 Multipliers for harmonic analysis in several variables
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

References:

[1] Bennett, J.; Carbery, A.; Tao, T., On the multilinear restriction and Kakeya conjectures, Acta Math., 196, 2, 261-302, 2006 · Zbl 1203.42019 · doi:10.1007/s11511-006-0006-4
[2] Bourgain, J.; Guth, L., Bounds on oscillatory integral operators based on multilinear estimates, Geom. Funct. Anal., 21, 6, 1239-1295, 2011 · Zbl 1237.42010 · doi:10.1007/s00039-011-0140-9
[3] Buschenhenke, S., Müller, D., Vargas, A.: On Fourier restriction for finite-type perturbations of the hyperboloid. arXiv:1902.05442 (2019) · Zbl 1479.42027
[4] Buschenhenke, S.; Müller, D.; Vargas, A., A Fourier restriction theorem for a perturbed hyperbolic paraboloid, Proc. Lond. Math. Soc. (3), 120, 1, 124-154, 2020 · Zbl 1442.42044 · doi:10.1112/plms.12286
[5] Buschenhenke, S., Müller, D., Vargas, A.: A Fourier restriction theorem for a perturbed hyperbolic paraboloid: polynomial partitioning. arXiv:2003.01619 (to appear in Math. Z.) · Zbl 1487.42015
[6] Buschenhenke, S., Müller, D., Vargas, A.: Fourier restriction for smooth hyperbolic 2-surfaces. arXiv:2010.10449 (to appear in Math. Ann.) · Zbl 1521.42011
[7] Buschenhenke, S.; Müller, D.; Vargas, A., Partitions of flat one-variate functions and a Fourier restriction theorem for related perturbations of the hyperbolic paraboloid, J. Geom. Anal., 31, 7, 6941-6986, 2021 · Zbl 1472.42028 · doi:10.1007/s12220-020-00587-9
[8] Cho, C-H; Lee, J., Improved restriction estimate for hyperbolic surfaces in \({\mathbb{R} }^3\), J. Funct. Anal., 273, 3, 917-945, 2017 · Zbl 1375.42011 · doi:10.1016/j.jfa.2017.04.015
[9] Guo, SM; Zorin-Kranich, P., Decoupling for certain quadratic surfaces of low co-dimensions, J. Lond. Math. Soc., 102, 1, 309-344, 2020 · Zbl 1454.42015 · doi:10.1112/jlms.12321
[10] Guth, L., A restriction estimate using polynomial partitioning, J. Am. Math. Soc., 29, 2, 371-413, 2016 · Zbl 1342.42010 · doi:10.1090/jams827
[11] Guth, L.; Hickman, J.; Iliopoulou, M., Sharp estimates for oscillatory integral operators via polynomial partitioning, Acta Math., 223, 2, 251-376, 2019 · Zbl 1430.42016 · doi:10.4310/ACTA.2019.v223.n2.a2
[12] Kim, J.: Some remarks on Fourier restriction estimates. arXiv:1702.01231 (2017)
[13] Lee, S., Bilinear restriction estimates for surfaces with curvatures of different signs, Trans. Am. Math. Soc., 358, 8, 3511-3533, 2006 · Zbl 1092.42003 · doi:10.1090/S0002-9947-05-03796-7
[14] Shayya, B., Weighted restriction estimates using polynomial partitioning, Proc. Lond. Math. Soc. (3), 115, 3, 545-598, 2017 · Zbl 1388.42020 · doi:10.1112/plms.12046
[15] Stein, E.M.: Oscillatory integrals in Fourier analysis. In: Beijing Lectures in Harmonic Analysis (Beijing, 1984). Annals of Mathematics Studies, vol. 112, pp. 307-355. Princeton University Press, Princeton (1986) · Zbl 0618.42006
[16] Stein, E.M., Shakarchi, R.: Functional Analysis—Introduction to Further Topics in Analysis. Princeton Lectures in Analysis, vol. 4. Princeton University Press, Princeton (2011) · Zbl 1235.46001
[17] Stovall, B., Scale-invariant Fourier restriction to a hyperbolic surface, Anal. PDE, 12, 5, 1215-1224, 2019 · Zbl 1405.42028 · doi:10.2140/apde.2019.12.1215
[18] Stovall, B., Waves, spheres, and tubes: a selection of Fourier restriction problems, methods, and applications, Not. Am. Math. Soc., 66, 7, 1013-1022, 2019 · Zbl 1440.42015
[19] Tao, T., The Bochner-Riesz conjecture implies the restriction conjecture, Duke Math. J., 96, 2, 363-375, 1999 · Zbl 0980.42006 · doi:10.1215/S0012-7094-99-09610-2
[20] Tao, T., A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal., 13, 6, 1359-1384, 2003 · Zbl 1068.42011 · doi:10.1007/s00039-003-0449-0
[21] Tao, T.: Some recent progress on the restriction conjecture. In: Fourier Analysis and Convexity. Applied and Numerical Harmonic Analysis, pp. 217-243. Birkhäuser Boston, Boston (2004) · Zbl 1083.42008
[22] Tao, T.; Vargas, A.; Vega, L., A bilinear approach to the restriction and Kakeya conjectures, J. Am. Math. Soc., 11, 4, 967-1000, 1998 · Zbl 0924.42008 · doi:10.1090/S0894-0347-98-00278-1
[23] Tomas, PA, A restriction theorem for the Fourier transform, Bull. Am. Math. Soc., 81, 477-478, 1975 · Zbl 0298.42011 · doi:10.1090/S0002-9904-1975-13790-6
[24] Vargas, A., Restriction theorems for a surface with negative curvature, Math. Z., 249, 1, 97-111, 2005 · Zbl 1071.42009 · doi:10.1007/s00209-004-0691-7
[25] Wang, H., A restriction estimate in \({\mathbb{R}}^3\) using brooms, Duke Math. J., 171, 8, 1749-1822, 2022 · Zbl 1492.42007 · doi:10.1215/00127094-2021-0064
[26] Wolff, T., A sharp bilinear cone restriction estimate, Ann. Math. (2), 153, 3, 661-698, 2001 · Zbl 1125.42302 · doi:10.2307/2661365
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.