×

Set-based state estimation for discrete-time constrained nonlinear systems: an approach based on constrained zonotopes and DC programming. (English) Zbl 1539.93173

Summary: This paper introduces a novel state estimator designed for discrete-time nonlinear dynamical systems that encompass unknown-but-bounded uncertainties, along with state linear inequality and nonlinear equality constraints. Our algorithm is based on constrained zonotopes (CZs) and employs a DC programming approach (where DC stands for difference of convex functions). Recently, techniques such as mean value extension and first-order Taylor extension have been adapted from zonotopes to facilitate the propagation of CZs across nonlinear mappings. While the resulting algorithms, known as CZMV and CZFO, achieve higher precision compared to the original zonotopic versions, they still exhibit sensitivity to the wrapping and dependency effects inherent in interval arithmetic. These interval-related challenges can be mitigated through the use of DC programming, as it allows for the determination of approximation error bounds by solving optimization problems. One direct advantage of this technique is the elimination of the dependency effect. Our set-membership filter, referred to as CZDC, provides an alternative solution to CZMV and CZFO. To showcase the effectiveness of our proposed approach, we conducted experiments using CZDC on two numerical examples.

MSC:

93E10 Estimation and detection in stochastic control theory
93C55 Discrete-time control/observation systems
93C10 Nonlinear systems in control theory
90C25 Convex programming

Software:

INTLAB; MPT

References:

[1] Adjiman, C. S.; Floudas, C. A., Rigorous convex underestimators for general twice-differentiable problems, Journal of Global Optimization, 9, 1, 23-40, (1996) · Zbl 0862.90114
[2] Alamo, T.; Bravo, J. M.; Camacho, E. F., Guaranteed state estimation by zonotopes, Automatica, 41, 6, 1035-1043, (2005) · Zbl 1091.93038
[3] Alamo, T.; Bravo, J. M.; Redondo, M.; Camacho, E. F., A set-membership state estimation algorithm based on DC programming, Automatica, 44, 1, 216-224, (2008) · Zbl 1138.93416
[4] Althoff, M.; Stursberg, O.; Buss, M., Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization, (2008 47th IEEE conference on decision and control, (2008)), 4042-4048
[5] Bravo, J. M.; Alamo, T.; Camacho, E. F., Bounded error identification of systems with time-varying parameters, IEEE Transactions on Automatic Control, 51, 7, 1144-1150, (2006) · Zbl 1366.93121
[6] Bravo, J. M.; Alamo, T.; Camacho, E. F., Robust MPC of constrained discrete-time nonlinear systems based on approximated reachable sets, Automatica, 42, 10, 1745-1751, (2006) · Zbl 1114.93060
[7] Bravo, J. M.; Alamo, T.; Redondo, M. J.; Camacho, E. F., An algorithm for bounded-error identification of nonlinear systems based on DC functions, Automatica, 44, 2, 437-444, (2008) · Zbl 1283.93086
[8] Chisci, L.; Garulli, A.; Zappa, G., Recursive state bounding by parallelotopes, Automatica, 32, 7, 1049-1055, (1996)
[9] Combastel, C., A state bounding observer for uncertain non-linear continuous-time systems based on zonotopes, (2005 IEEE 44th conference on decision and control, (2005)), 7228-7234
[10] de Paula, A. A.; Raffo, G. V.; Teixeira, B. O.S., Zonotopic filtering for uncertain nonlinear systems: Fundamentals, implementation aspects, and extensions [applications of control], IEEE Control Systems, 42, 1, 19-51, (2022)
[11] Di Marco, M.; Garulli, A.; Giannitrapani, A.; Vicino, A., A set theoretic approach to dynamic robot localization and mapping, Autonomous Robots, 16, 1, 23-47, (2004)
[12] Grocholsky, B., Stump, E., & Kumar, V. (2006). An extensive representation for range-only SLAM. In International symposium on experimental robotics, 2006, Rio de Janeiro (pp. 1-10).
[13] Hast, D.; Findeisen, R.; Streif, S., Detection and isolation of parametric faults in hydraulic pumps using a set-based approach and quantitative-qualitative fault specifications, Control Engineering Practice, 40, 61-70, (2015)
[14] Herceg, M., Kvasnica, M., Jones, C., & Morari, M. (2013). Multi-Parametric Toolbox 3.0. In Proc. of the European Control Conference (pp. 502-510). Zürich, Switzerland: http://control.ee.ethz.ch/ mpt.
[15] Ifqir, S.; Puig, V.; Ichalal, D.; Ait-Oufroukh, N.; Mammar, S., Zonotopic set-membership estimation for switched systems based on wi-radius minimization: Vehicle application, IFAC-PapersOnLine, 53, 2, 7446-7451, (2020)
[16] Li, S.; Stouraitis, T.; Gienger, M.; Vijayakumar, S.; Shah, J. A., Set-based state estimation with probabilistic consistency guarantee under epistemic uncertainty, (2021), arXiv preprint arXiv:2110.09584
[17] Mesbah, A., Stochastic model predictive control: An overview and perspectives for future research, IEEE Control Systems Magazine, 36, 6, 30-44, (2016) · Zbl 1476.93147
[18] Pourasghar, M.; Puig, V.; Ocampo-Martinez, C., Interval observer versus set-membership approaches for fault detection in uncertain systems using zonotopes, International Journal of Robust and Nonlinear Control, 29, 10, 2819-2843, (2019) · Zbl 1418.93259
[19] Rego, B. S., Locatelli, D., Raimondo, D. M., & Raffo, G. V. Joint state and parameter estimation based on constrained zonotopes. Automatica, accepted,. · Zbl 1496.93116
[20] Rego, B. S.; Raffo, G. V.; Scott, J. K.; Raimondo, D. M., Guaranteed methods based on constrained zonotopes for set-valued state estimation of nonlinear discrete-time systems, Automatica, 111, Article 108614 pp., (2020) · Zbl 1430.93207
[21] Rego, B. S.; Scott, J. K.; Raimondo, D. M.; Raffo, G. V., Set-valued state estimation of nonlinear discrete-time systems with nonlinear invariants based on constrained zonotopes, Automatica, 129, Article 109638 pp., (2021) · Zbl 1478.93126
[22] Rump, S., INTLAB - interval laboratory, (Csendes, T., Developments in Reliable Computing, (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 77-104, http://www.ti3.tuhh.de/rump/ · Zbl 0949.65046
[23] Scott, J. K.; Raimondo, D. M.; Marseglia, G. R.; Braatz, R. D., Constrained zonotopes: A new tool for set-based estimation and fault detection, Automatica, 69, 126-136, (2016) · Zbl 1338.93119
[24] Tabatabaeipour, S. M.; Odgaard, P. F.; Bak, T.; Stoustrup, J., Fault detection of wind turbines with uncertain parameters: A set-membership approach, Energies, 5, 7, 2424-2448, (2012)
[25] Tao, P. D.; An, L. T.H., Convex analysis approach to DC programming: theory, algorithms and applications, Acta Mathematica Vietnamica, 22, 1, 289-355, (1997) · Zbl 0895.90152
[26] Teixeira, B. O.S.; Chandrasekar, J.; Tôrres, L. A.; Aguirre, L. A.; Bernstein, D. S., State estimation for linear and non-linear equality-constrained systems, International Journal of Control, 82, 5, 918-936, (2009) · Zbl 1165.93033
[27] Wang, Y.; Blesa, J.; Puig, V., Robust periodic economic predictive control based on interval arithmetic for water distribution networks, IFAC-PapersOnLine, 50, 1, 5202-5207, (2017)
[28] Xu, F.; Puig, V.; Ocampo-Martinez, C.; Olaru, S.; Stoican, F., Set-theoretic methods in robust detection and isolation of sensor faults, International Journal of Systems Science, 46, 13, 2317-2334, (2015) · Zbl 1333.93153
[29] Yang, X.; Scott, J. K., A comparison of zonotope order reduction techniques, Automatica, 95, 378-384, (2018) · Zbl 1402.93087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.