×

A combination of proper orthogonal decomposition-discrete empirical interpolation method (POD-DEIM) and meshless local RBF-DQ approach for prevention of groundwater contamination. (English) Zbl 1409.76095

Summary: The main presented idea is to reduce the used CPU time for employing the local radial basis functions-differential quadrature (LRBF-DQ) method. To this end, the proper orthogonal decomposition-discrete empirical interpolation method (POD-DEIM) has been combined with the LRBF-DQ technique. For checking the ability of the new procedure, the groundwater equation is solved. This equation has been classified in category of system of advection-diffusion equations. The solutions of advection equations have some shock, thus, special numerical methods should be applied for example discontinuous Galerkin and finite volume methods. Moreover, several test problems are given that show the acceptable accuracy and efficiency of the proposed schemes.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
86A05 Hydrology, hydrography, oceanography

Software:

Matlab
Full Text: DOI

References:

[1] Dehghan, M.; Shokri, A., A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions, Math. Comput. Simul., 79, 3, 700-715 (2008) · Zbl 1155.65379
[2] Zhang, X. H.; Zhang, P., Meshless modeling of natural convection problems in non-rectangular cavity using the variational multiscale element free Galerkin method, Eng. Anal. Bound. Elem., 61, 287-300 (2015) · Zbl 1403.76054
[3] Zhang, X. H.; Zhang, P., Heterogeneous heat conduction problems by an improved element-free Galerkin method, Numer. Heat Transfer, 65, 359-375 (2014)
[4] Driscoll, T. A.; Fornberg, B., Interpolation in the limit of increasingly flat radial basis functions, Comput. Math. Appl., 43, 3, 413-422 (2002) · Zbl 1006.65013
[5] Fornberg, B.; Lehto, E.; Powell, C., Stable calculation of Gaussian-based RBF-FD stencils, Comput. Math. Appl., 65, 4, 627-637 (2013) · Zbl 1319.65011
[6] Gonzalez-Rodriguez, P.; Bayona, V.; Moscoso, M.; Kindelan, M., Laurent series based RBF-FD method to avoid ill-conditioning, Eng. Anal. Bound. Elem., 52, 24-31 (2015) · Zbl 1403.65110
[7] Sarra, S. A., Adaptive radial basis function methods for time dependent partial differential equations, Appl. Numer. Math., 54, 1, 79-94 (2005) · Zbl 1069.65109
[8] Shu, C.; Ding, H.; Yeo, K., Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 192, 7, 941-954 (2003) · Zbl 1025.76036
[9] A.I. Tolstykh, On using RBF-based differencing formulas for unstructured and mixed structured-unstructured grid calculations, in: Proceedings of the 16th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation, Lausanne, Switzerland, 2000, p. 6.; A.I. Tolstykh, On using RBF-based differencing formulas for unstructured and mixed structured-unstructured grid calculations, in: Proceedings of the 16th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation, Lausanne, Switzerland, 2000, p. 6.
[10] Tolstykh, A.; Shirobokov, D., On using radial basis functions in a “finite difference mode” with applications to elasticity problems, Comput. Mech., 33, 1, 68-79 (2003) · Zbl 1063.74104
[11] Fornberg, B.; Lehto, E., Stabilization of RBF-generated finite difference methods for convective PDEs, J. Comput. Phys., 230, 6, 2270-2285 (2011) · Zbl 1210.65154
[12] Bayona, V.; Moscoso, M.; Kindelan, M., Gaussian RBF-FD weights and its corresponding local truncation errors, Eng. Anal. Bound. Elem., 36, 9, 1361-1369 (2012) · Zbl 1352.65560
[13] Bayona, V.; Moscoso, M.; Kindelan, M., Optimal constant shape parameter for multiquadric based RBF-FD method, J. Comput. Phys., 230, 19, 7384-7399 (2011) · Zbl 1343.65128
[14] Bayona, V.; Moscoso, M.; Kindelan, M., Optimal variable shape parameter for multiquadric based RBF-FD method, J. Comput. Phys., 231, 6, 2466-2481 (2012) · Zbl 1429.65267
[15] Bayona, V.; Moscoso, M.; Carretero, M.; Kindelan, M., RBF-FD formulas and convergence properties, J. Comput. Phys., 229, 22, 8281-8295 (2010) · Zbl 1201.65038
[16] Flyer, N.; Lehto, E.; Blaise, S.; Wright, G. B.; St-Cyr, A., A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere, J. Comput. Phys., 231, 11, 4078-4095 (2012) · Zbl 1394.76078
[17] Bollig, E. F.; Flyer, N.; Erlebacher, G., Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs, J. Comput. Phys., 231, 21, 7133-7151 (2012)
[18] Shankar, V.; Wright, G. B.; Kirby, R. M.; Fogelson, A. L., A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction-diffusion equations on surfaces, J. Sci. Comput., 63, 3, 745-768 (2015) · Zbl 1319.65079
[19] Bellman, R.; Kashef, B.; Casti, J., Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, J. Comput. Phys., 10, 1, 40-52 (1972) · Zbl 0247.65061
[20] Shu, C., Differential Quadrature and its Application in Engineering (2012), Springer Science & Business Media
[21] Shu, C.; Ding, H.; Yeo, K., Solution of partial differential equations by a global radial basis function-based differential quadrature method, Eng. Anal. Bound. Elem., 28, 10, 1217-1226 (2004) · Zbl 1081.65546
[22] Dehghan, M.; Mohammadi, V., The numerical solution of Cahn-Hilliard (CH) equation in one, two and three-dimensions via globally radial basis functions (GRBFs) and RBFs-differential quadrature (RBFs-DQ) methods, Eng. Anal. Bound. Elem., 51, 74-100 (2015) · Zbl 1403.65085
[23] Dehghan, M.; Nikpour, A., Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method, Appl. Math. Model., 37, 18, 8578-8599 (2013) · Zbl 1426.65113
[24] Dehghan, M.; Shokri, A., Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions, J. Comput. Appl. Math., 230, 2, 400-410 (2009) · Zbl 1168.65398
[25] Dehghan, M.; Nikpour, A., The solitary wave solution of coupled Klein-Gordon-Zakharov equations via two different numerical methods, Comput. Phys. Comm., 184, 9, 2145-2158 (2013) · Zbl 1344.82041
[26] Tornabene, F.; Fantuzzi, N.; Bacciocchi, M.; Neves, A. M.; Ferreira, A. J., MLSDQ based on RBFs for the free vibrations of laminated composite doubly-curved shells, Composites B, 99, 30-47 (2016)
[27] Kutanaei, S. S.; Roshan, N.; Vosoughi, A.; Saghafi, S.; Barari, A.; Soleimani, S., Numerical solution of Stokes flow in a circular cavity using mesh-free local RBF-DQ, Eng. Anal. Bound. Elem., 36, 5, 633-638 (2012) · Zbl 1351.76024
[28] Chaturantabut, S., Dimension Reduction for Unsteady Nonlinear Partial Differential Equations via Empirical Interpolation Methods (2009), ProQuest
[29] Chaturantabut, S.; Sorensen, D. C., A state space error estimate for POD-DEIM nonlinear model reduction, SIAM J. Numer. Anal., 50, 1, 46-63 (2012) · Zbl 1237.93035
[30] Fang, F.; Pain, C.; Navon, I.; Gorman, G.; Piggott, M.; Allison, P.; Farrell, P.; Goddard, A., A POD reduced order unstructured mesh ocean modelling method for moderate Reynolds number flows, Ocean Model., 28, 1, 127-136 (2009)
[31] Lin, Z.; Xiao, D.; Fang, F.; Pain, C. C.; Navon, I. M., Non-intrusive reduced order modelling with least squares fitting on a sparse grid, Int. J. Numer. Methods Fluids, 83, 291-306 (2017)
[32] Ravindran, S., Reduced-order adaptive controllers for fluid flows using POD, J. Sci. Comput., 15, 4, 457-478 (2000) · Zbl 1048.76016
[33] Ravindran, S. S., A reduced-order approach for optimal control of fluids using proper orthogonal decomposition, Internat. J. Numer. Methods Fluids, 34, 5, 425-448 (2000) · Zbl 1005.76020
[34] Ştefănescu, R.; Navon, I. M., POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model, J. Comput. Phys., 237, 95-114 (2013) · Zbl 1286.76106
[35] Ştefănescu, R.; Sandu, A.; Navon, I. M., Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations, Int. J. Numer. Methods Fluids, 76, 8, 497-521 (2014)
[36] Xiao, D.; Lin, Z.; Fang, F.; Pain, C.; Navon, I. M.; Salinas, P.; Muggeridge, A., Non-intrusive reduced order modeling for multiphase porous media flows using Smolyak sparse grids, Internat. J. Numer. Methods Fluids, 83, 205-219 (2017)
[37] Dimitriu, G.; Stefanescu, R.; Navon, I. M., POD-DEIM approach on dimension reduction of a multi-species host-parasitoid system, Acad. Rom. Sci., 173 (2015) · Zbl 1515.35131
[38] Xiao, D.; Yang, P.; Fang, F.; Xiang, J.; Pain, C. C.; Navon, I. M.; Chen, M., A non-intrusive reduced-order model for compressible fluid and fractured solid coupling and its application to blasting, J. Comput. Phys., 330, 221-244 (2017) · Zbl 1378.74067
[39] Cao, Y.; Zhu, J.; Luo, Z.; Navon, I. M., Reduced order modeling of the upper tropical pacific ocean model using proper orthogonal decomposition, Comput. Math. Appl., 52, 1373-1386 (2006) · Zbl 1161.86002
[40] Wang, Y.; Navon, I. M.; Wang, X.; Cheng, Y., 2D burgers equation with large Reynolds number using POD/DEIM and calibration, Int. J. Numer. Methods Fluids, 82, 909-931 (2016)
[41] Xiao, D.; Fang, F.; Buchan, A. G.; Pain, C. C.; Navon, I. M.; Du, J.; Hu, G., Non-linear model reduction for the Navier-Stokes equations using residual DEIM method, J. Comput. Phys., 263, 1-18 (2014) · Zbl 1349.76288
[42] Xiao, D.; Yang, P.; Fang, F.; Xiang, J.; Pain, C. C.; Navon, I. M., Non-intrusive reduced order modeling of fluid-structure interactions, Comput. Methods Appl. Mech. Engrg., 303, 35-54 (2016) · Zbl 1425.74167
[43] Xiao, D.; Fang, F.; Pain, C. C.; Navon, I. M., A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications, Comput. Methods Appl. Mech. Engrg., 317, 868-889 (2017) · Zbl 1439.65124
[44] Zhang, X. H.; Xiang, H., A fast meshless method based on proper orthogonal decomposition for the transient heat conduction problems, Int. J. Heat Mass Transfer, 84, 729-739 (2015)
[45] Zhang, P.; Zhang, X. H.; Xiang, H.; Song, L., A fast and stabilized meshless method for the convection-dominated convection-diffusion problems, Numer. Heat Transfer, 70, 4, 420-431 (2016)
[46] Dehghan, M.; Abbaszadeh, M., Proper orthogonal decomposition variational multiscale element free Galerkin (POD-VMEFG) meshless method for solving incompressible Navier-Stokes equation, Comput. Methods Appl. Mech. Engrg., 311, 856-888 (2016) · Zbl 1439.76060
[47] Wazwaz, A.-M., Partial Differential Equations and Solitary Waves Theory (2010), Springer
[48] Liu, W.; Huang, J.; Long, X., Coupled nonlinear advection-diffusion-reaction system for prevention of groundwater contamination by modified upwind finite volume element method, Comput. Math. Appl., 69, 6, 477-493 (2015) · Zbl 1444.65056
[49] Wang, X.; Huo, Z.; Feng, S.; Guo, P.; Guan, H., Estimating groundwater evapotranspiration from irrigated cropland incorporating root zone soil texture and moisture dynamics, Journal of Hydrology, 543, 501-509 (2016)
[50] Zhang, W.; Yang, H.; Fang, L.; Cui, P.; Fang, Z., Study on heat transfer of pile foundation ground heat exchanger with three-dimensional groundwater seepage, Int. J. Heat Mass Transfer, 105, 58-66 (2017)
[51] Ilati, M.; Dehghan, M., Remediation of contaminated groundwater by meshless local weak forms, Comput. Math. Appl., 72, 9, 2408-2416 (2016) · Zbl 1368.76035
[52] Budinski, L.; Fabian, J.; Stipić, M., Lattice boltzmann method for groundwater flow in non-orthogonal structured lattices, Comput. Math. Appl., 70, 10, 2601-2615 (2015) · Zbl 1443.76166
[53] Tambue, A., An exponential integrator for finite volume discretization of a reaction-advection-diffusion equation, Comput. Math. Appl., 71, 9, 1875-1897 (2016) · Zbl 1443.65167
[54] Dacunto, B.; Parente, F.; Urciuoli, G., Numerical models for 2D free boundary analysis of groundwater in slopes stabilized by drain trenches, Comput. Math. Appl., 53, 10, 1615-1626 (2007) · Zbl 1152.65460
[55] Shoushtari, S. M.H. J.; Cartwright, N.; Perrochet, P.; Nielsen, P., Two-dimensional vertical moisture-pressure dynamics above groundwater waves: Sand flume experiments and modelling, J. Hydrol., 544, 467-478 (2017)
[56] Kobus, H. E.; Kinzelbach, W., Contaminant Transport in Groundwater: Proceedings of an International Symposium, Stuttgart, 4-6 April 1989, Vol. 3 (1989), CRC Press
[57] Liu, B., An error analysis of a finite element method for a system of nonlinear advection-diffusion-reaction equations, Appl. Numer. Math., 59, 8, 1947-1959 (2009) · Zbl 1169.65085
[58] Jiang, T.; Zhang, Y.-T., Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations, J. Comput. Phys., 253, 368-388 (2013) · Zbl 1349.65305
[59] Hon, Y.-C.; S, Y.̌arler, B.; Yun, D.-f., Local radial basis function collocation method for solving thermo-driven fluid-flow problems with free surface, Eng. Anal. Bound. Elem., 57, 2-8 (2015) · Zbl 1403.76140
[60] Mramor, K.; Vertnik, R.; Šarler, B., Simulation of laminar backward facing step flow under magnetic field with explicit local radial basis function collocation method, Eng. Anal. Bound. Elem., 49, 37-47 (2014) · Zbl 1403.76196
[61] Fasshauer, G. E., Meshfree Approximation Methods with MATLAB (2007), World scientific: World scientific USA · Zbl 1123.65001
[62] Wendland, H., (Scattered Data Approximation. Scattered Data Approximation, Cambridge Monograph on Applied and Computational Mathematics (2005), Cambridge University Press) · Zbl 1075.65021
[63] Liu, G. R.; Gu, Y. T., An Introduction to Meshfree Methods and their Programming (2005), Springer Dordrecht: Springer Dordrecht Berlin, Heidelberg, New York
[64] Rippa, S., An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Adv. Comput. Math., 11, 193-210 (1999) · Zbl 0943.65017
[65] Dehghan, M., Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math. Comput. Simulation, 71, 1, 16-30 (2006) · Zbl 1089.65085
[66] Ştefănescu, R.; Sandu, A.; Navon, I. M., POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation, J. Comput. Phys., 295, 569-595 (2015) · Zbl 1349.76535
[67] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339, 9, 667-672 (2004) · Zbl 1061.65118
[68] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 5, 2737-2764 (2010) · Zbl 1217.65169
[69] Sarra, S. A., A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains, Appl. Math. Comput., 218, 19, 9853-9865 (2012) · Zbl 1245.65144
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.