×

Bifurcation and pattern formation in a coupled higher autocatalator reaction diffusion system. (English) Zbl 1231.35100

Summary: Spatiotemporal structures arising in two identical cells, which are governed by higher autocatalator kinetics and coupled via diffusive interchange of autocatalyst, are discussed. The stability of the unique homogeneous steady state is obtained by the linearized theory. A necessary condition for bifurcations in spatially non-uniform solutions in uncoupled and coupled systems is given. Further information about Turing pattern solutions near bifurcation points is obtained by weakly nonlinear theory. Finally, the stability of equilibrium points of the amplitude equation is discussed by weakly nonlinear theory, with the bifurcation branches of the weakly coupled system.

MSC:

35K57 Reaction-diffusion equations
35K55 Nonlinear parabolic equations
35B32 Bifurcations in context of PDEs
92E20 Classical flows, reactions, etc. in chemistry
Full Text: DOI

References:

[1] Wollkind David J, Stephenson Laura E. Chemical Turing pattern formation analyses:comparison of theory with experiment[J]. SIAM J Appl Math, 2000, 61(2):387–431. · Zbl 0992.92002 · doi:10.1137/S0036139997326211
[2] Hill R, Merkin J H. Patten formation in a coupled cubic autocatalator system[J]. IMA J Appl Math, 1994, 53(3):265–322. · Zbl 0815.92003 · doi:10.1093/imamat/53.3.295
[3] Hill R, Merkin J H, Needham D J. Stable pattern and standing wave formation in a simple isothermal cubic autocatalytic reaction scheme[J]. Journal of Engineering Mathematics, 1995, 29(3):413–436. · Zbl 0847.35064 · doi:10.1007/BF00043976
[4] Hill R, Merkin J H. The effects of coupling on pattern formation a simple autocatalytic system[J]. IMA J Appl Math, 1995, 54(3):257–281. · Zbl 0834.92028 · doi:10.1093/imamat/54.3.257
[5] Metcalf M J, Merkin J H. Reaction diffusion waves in coupled isothermal autocatalytic chemical systems[J]. IMA Journal of Applied Mathematics, 1993, 51(3):269–298. · Zbl 0808.35164 · doi:10.1093/imamat/51.3.269
[6] Collier S M, Merkin J H, Scott S K. Multistability, oscillations and travelling waves in a product-feedback autocatalator model. II The initiation and propagation of travelling waves[J]. Phil Trans R Soc Lond A, 1994, 349(1691):389–415. · Zbl 0821.92026 · doi:10.1098/rsta.1994.0139
[7] Merkin J H, Needham D J, Scott S K. Coupled reaction-diffusion waves in an isothermal autocatalytic chemical system[J]. IMA J Appl Math, 1993, 50(1):43–76. · Zbl 0780.35053 · doi:10.1093/imamat/50.1.43
[8] Hovvath Dezso, Toth Agota. Turing patterns in a single-step autocatalytic reaction[J]. J Chem Soc Faraday Trans, 1997, 93(24):4301–4303. · doi:10.1039/a705895k
[9] Merkin J H, Sevcikova H, Snita D. The effect of an electric field on the local stoichiometry of front waves in an ionic chemical system[J]. IMA J Appl Math, 2000, 64(2):157–188. · Zbl 0945.92029 · doi:10.1093/imamat/64.2.157
[10] Merkin J H, Sevcikova H. The effects of a complexing agent on travelling waves in autocatalytic systems with applied electric fields[J]. IMA J Appl Math, 2005, 70(4):527–549. · Zbl 1084.35032 · doi:10.1093/imamat/hxh045
[11] Metcalf M J, Merkin J H, Scott S K. Oscillating wave fronts in isothermal chemical systems with arbitrary powers of autocatalysis[J]. Proc R Soc Lond A, 1994, 447(1929):155–174. · Zbl 0809.92027 · doi:10.1098/rspa.1994.0133
[12] Hubbard M E, Leach J A, Wei J C. Pattern formation in a 2D simple chemical system with general orders of autocatalysis and decay[J]. IMA J Appl Math, 2005, 70(6):723–747. · Zbl 1094.35062 · doi:10.1093/imamat/hxh076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.