×

Eta invariants of Dirac operators on circle bundles over Riemann surfaces and virtual dimensions of finite energy Seiberg-Witten moduli spaces. (English) Zbl 0998.58022

From the text: Using an adiabatic collapse trick we determine, by two different methods, the eta invariants of many Dirac type operators on circle bundles over Riemann surfaces. These results, coupled with a delicate spectral flow computation, are then used to determine the virtual dimensions of moduli spaces of finite energy Seiberg-Witten monopoles on 4-manifolds bounding such circle bundles.
This paper is divided into three sections and four appendices. The first section is essentially a brief survey of known facts concerning the eta invariant: definition, the Atiyah-Patodi-Singer theorem, variational formulae and the spectral flow. We included these facts as a service to the reader, to eliminate any ambiguity concerning the various sign conventions. There does not seem to be general agreement on these conventions and, additionally, we used some “folklore” results which we could not indicate satisfactory references.
The second section contains the main steps in the computation of the eta invariants discussed above. We begin by describing the geometric background and the various Dirac operators. Then using variational formulae for the eta invariant and the adiabatic results of Bismut-Cheeger-Dai we compute in the second part the eta invariant of the Dirac operator on a circle bundle with very short fibers (Theorem 2.4).
In the third part, we compute the eta invariant of the adiabatic Dirac operator – a perturbation of the Dirac operator which arose in [L. I. Nicolaescu, Commun. Anal. Geom. 6, No. 2, 331-392 (1998; Zbl 0937.58025)]. This is achieved in Theorem 2.6 via a variational formula and a spectral flow computation. The computations of certain transgression terms involved in the variational formulae are deferred to appendices. An alternative method of computation is described in Appendix C.
The last part of this section is devoted to extending the previous computations to the Dirac operators coupled with flat line bundles. We use essentially the same variational strategy. However, new phenomena arise during the computation of some spectral flow contributions.
The third section is devoted to applications to Seiberg-Witten theory. The first two subsections describe the 3- and 4-dimensional Seiberg-Witten equations and some basic facts about them established in [T. Mrowka, P. Ozsvath and B. Yu, Commun. Anal. Geom. 5, No. 4, 685-791 (1997; Zbl 0933.57030)] and by the author [loc. cit.]. The third subsection is entirely devoted to the computation of a spectral flow. This is a very delicate job since one has to worry about eigenvalues changing sign in a nontransversal manner. In the last subsection we compute virtual dimensions of finite energy Seiberg-Witten moduli spaces on 4-manifolds founding circle bundles over Riemann surfaces and we conclude by comparing our answers in the special case of tunnelings to those by T. Mrowka, P. Ozsvath, B. Yu [loc. cit.].

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds
58D27 Moduli problems for differential geometric structures
53C27 Spin and Spin\({}^c\) geometry
58J20 Index theory and related fixed-point theorems on manifolds

References:

[1] Atiyah, M. F.; Patodi, V. K.; Singer, I. M., Spectral asymmetry and Riemannian geometry I, Mathematical Proceedings of the Cambridge Philosophical Society, 77, 43-69 (1975) · Zbl 0297.58008
[2] Atiyah, M. F.; Patodi, V. K.; Singer, I. M., Spectral asymmetry and Riemannian geometry II, Mathematical Proceedings of the Cambridge Philosophical Society, 78, 405-432 (1975) · Zbl 0314.58016 · doi:10.1017/S0305004100051872
[3] Atiyah, M. F.; Patodi, V. K.; Singer, I. M., Spectral asymmetry and Riemannian geometry III, Mathematical Proceedings of the Cambridge Philosophical Society, 79, 71-99 (1976) · Zbl 0325.58015
[4] Berline, N.; Getzler, E.; Vergne, M., Heat Kernels and Dirac Operators (1992), Berlin: Springer-Verlag, Berlin · Zbl 0744.58001
[5] Bismut, J. M.; Cheeger, J., η-invariants and their adiabatic limits, Journal of the American Mathematical Society, 2, 33-70 (1989) · Zbl 0671.58037 · doi:10.2307/1990912
[6] Bismut, J. M.; Freed, D. S., The analysis of elliptic families. II Dirac operators, eta invariants, and the holonomy theorem, Communications in Mathematical Physics, 107, 103-163 (1986) · Zbl 0657.58038 · doi:10.1007/BF01206955
[7] Dai, X., Adiabatic limits, nonmultiplicativity of signature and Leray spectral sequence, Journal of the American Mathematical Society, 4, 265-321 (1991) · Zbl 0736.58039 · doi:10.2307/2939276
[8] Dai, X.; Zhang, W., Circle bundles and the Kreck-Stolz invariant, Transactions of the American Mathematical Society, 347, 3587-3593 (1995) · Zbl 0865.58041 · doi:10.2307/2155025
[9] Farber, M.; Levine, J., Jumps of the eta-invariant. With an appendix by Shmuel Weiberger: Rationality of ρ-invariants, Mathematische Zeitschrift, 223, 197-246 (1996) · Zbl 0867.57027
[10] Gilkey, P. B., Invariance Theory, The Heat Equation and the Atiyah-Singer Index Theorem (1995), Boca Raton: CRC Press, Boca Raton · Zbl 0856.58001
[11] Kato, T., Perturbation Theory For Linear Operators (1980), Berlin: Springer-Verlag, Berlin · Zbl 0435.47001
[12] Kirk, P.; Klassen, E., The spectral flow of the odd signature operator and higher Massey products, Mathematical Proceedings of the Cambridge Philosophical Society, 121, 297-320 (1997) · Zbl 0895.58058 · doi:10.1017/S0305004196001272
[13] Komuro, M., On Atiyah-Patodi-Singer η-invariant for S^1-bundles over Riemann surfaces, Journal of the Faculty of Science of the University of Tokyo. Section IA. Mathematics, 30, 525-548 (1984) · Zbl 0534.58036
[14] Kreck, M.; Stolz, S., Nonconnected moduli spaces of positive sectional curvature metrics, Journal of the American Mathematical Society, 6, 825-850 (1993) · Zbl 0793.53041 · doi:10.2307/2152742
[15] Lockhart, R. B.; McOwen, R. C., Elliptic differential equations on non-compact manifolds, Annali della Scuola Normale Superiore di Pisa, 12, 409-448 (1985) · Zbl 0615.58048
[16] Morgan, J. W., The Seiberg-Witten equations and applications to the topology of smooth four-manifolds (1996), Princeton: Princeton University Press, Princeton · Zbl 0846.57001
[17] Morgan, J. W.; Mrowka, T.; Ruberman, D., The L^2-Moduli Space and a Vanishing Theorem for Donaldson Polynomial Invariants (1994), Cambridge, MA: International Press, Cambridge, MA · Zbl 0830.58005
[18] Mrowka, T.; Ozsvath, P.; Yu, B., Seiberg-Witten monopoles on Seifert fibered spaces, Communications in Analysis and Geometry, 5, 685-791 (1997) · Zbl 0933.57030
[19] Nicolaescu, L. I., Adiabatic limits of the Seiberg-Witten equations on Seifert manifolds, Communications in Analysis and Geometry, 6, 301-362 (1998) · Zbl 0937.58025
[20] L. I. Nicolaescu,Finite energy Seiberg-Witten moduli spaces of 4-manifolds bounding Seifert fibrations, preprint dg-ga/9711006. · Zbl 1001.58004
[21] L. I. Nicolaescu,Lattice points, Dedekind-Rademacher sums and a conjecture of Kronheimer and Mrowka, preprint math DG/9801030.
[22] Ouyang, M., Geometric invariants for Seifert fibered 3-manifolds, Transactions of the American Mathematical Society, 346, 641-659 (1994) · Zbl 0843.57015 · doi:10.2307/2154864
[23] Robbin, J.; Salamon, D., The spectral flow and the Maslov index, The Bulletin of the London Mathematical Society, 27, 1-33 (1995) · Zbl 0859.58025 · doi:10.1112/blms/27.1.1
[24] Roe, J., Elliptic Operators, Topology And Asymptotic Methods (1988), Harlow: Longman Scientific and Technical, Harlow · Zbl 0654.58031
[25] Seade, J.; Steer, B., A note on the eta function for quotients of PSL_2(R)by co-compact fuchsian groups, Topology, 26, 79-91 (1987) · Zbl 0664.58042 · doi:10.1016/0040-9383(87)90023-1
[26] E. T. Whittaker and G. N. Watson,A Course of Modern Analysis, Cambridge University Press, 1940. · Zbl 1458.30002
[27] Zhang, W., Circle bundles, adiabatic limits of η-invariants and Rokhlin congruences, Annales de l’Institut Fourier (Grenoble), 44, 249-270 (1994) · Zbl 0792.57012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.