×

Equivariant Brill-Noether theory for elliptic operators and superrigidity of \(J\)-holomorphic maps. (English) Zbl 07643021

Summary: The space of Fredholm operators of fixed index is stratified by submanifolds according to the dimension of the kernel. Geometric considerations often lead to questions about the intersections of concrete families of elliptic operators with these submanifolds: Are the intersections nonempty? Are they smooth? What are their codimensions? The purpose of this article is to develop tools to address these questions in equivariant situations. An important motivation for this work are transversality questions for multiple covers of \(J\)-holomorphic maps. As an application, we use our framework to give a concise exposition of Wendl’s proof of the superrigidity conjecture.

MSC:

47-XX Operator theory
32-XX Several complex variables and analytic spaces
55N34 Elliptic cohomology
58J70 Invariance and symmetry properties for PDEs on manifolds
58C99 Calculus on manifolds; nonlinear operators
57M60 Group actions on manifolds and cell complexes in low dimensions
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
53D35 Global theory of symplectic and contact manifolds

References:

[1] Adem, A., Leida, J. and Ruan, Y., ‘Orbifolds and Stringy Topology’, Cambridge Tracts in Mathematics, 171 (Cambridge University Press, Cambridge, 2007). doi: https://doi.org/10.1017/CBO9780511543081. · Zbl 1157.57001
[2] Arbarello, E., Cornalba, M., Griffiths, P. A. and Harris, J., Geometry of Algebraic Curves, Grundlehren der Mathematischen Wissenschaften, 267 (Springer, New York, NY, 1985). doi: doi:10.1007/978-1-4757-5323-3. · Zbl 0559.14017
[3] Aronszajn, N., ‘A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order’, Journal de Mathématiques Pures et Appliquées. Neuvième Série36 (1957), 235-249. · Zbl 0084.30402
[4] Bernard, P. and Mandorino, V., ‘Some remarks on Thom’s transversality theorem’, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V14(2) (2015), 361-386. · Zbl 1330.58003
[5] Bryan, J. and Pandharipande, R., ‘BPS states of curves in Calabi-Yau \(3\) -folds’, Geometry and Topology5 (2001), 287-318. doi: gt.2001.5.287 · Zbl 1063.14068
[6] Cordes, H. O., ‘Über die eindeutige Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben’, in Nachrichten der Akademie der Wissenschaften in Göttingen, Mathematisch-Physikalische Klasse. 2a, (Mathematisch-Physikalisch-Chemische Abteilung 1956 (1956)), 239-258. · Zbl 0074.08002
[7] Eftekhary, E., ‘On finiteness and rigidity of \(J\) -holomorphic curves in symplectic three-folds’, Advances in Mathematics289 (2016), 1082-1105. doi: doi:10.1016/j.aim.2015.11.028. · Zbl 1331.53107
[8] Eftekhary, E., Counting Closed Geodesics on Riemannian Manifolds (2019). Preprint, https://arxiv.org/abs/1912.10740.
[9] Eisenbud, D. and Harris, J., ‘A simpler proof of the Gieseker-Petri theorem on special divisors’, Inventiones Mathematicae74(2) (1983), 269-280. doi: doi:10.1007/BF01394316. · Zbl 0533.14012
[10] Floer, A., ‘The unregularized gradient flow of the symplectic action’, Communications on Pure and Applied Mathematics41(6) (1988), 775-813. doi: doi:10.1002/cpa.3160410603. · Zbl 0633.53058
[11] Furuta, M. and Steer, B., ‘Seifert fibred homology \(3\) -spheres and the Yang-Mills equations on Riemann surfaces with marked points’, Advances in Mathematics96(1) (1992), 38-102. · Zbl 0769.58009
[12] Garofalo, N. and Lin, F.-H., ‘Unique continuation for elliptic operators: A geometric-variational approach’, Communications on Pure and Applied Mathematics40(3) (1987), 347-366. doi: doi:10.1002/cpa.3160400305. · Zbl 0674.35007
[13] Gerig, C. and Wendl, C., ‘Generic transversality for unbranched covers of closed pseudoholomorphic curves’, Communications on Pure and Applied Mathematics70(3) (2017), 409-443. · Zbl 1407.32015
[14] Gieseker, D., ‘Stable curves and special divisors: Petri’s conjecture’, Inventiones Mathematicae66(2) (1982), 251-275. doi: doi:10.1007/BF01389394. · Zbl 0522.14015
[15] Gromov, M., ‘Pseudo holomorphic curves in symplectic manifolds’, Inventiones Mathematicae82(2) (1985), 307-347. doi: doi:10.1007/BF01388806. · Zbl 0592.53025
[16] Ionel, E.-N. and Parker, T. H., ‘The Gopakumar-Vafa formula for symplectic manifolds’, Annals of Mathematics187(1) (2018), 1-64. doi: doi:10.4007/annals.2018.187.1.1. · Zbl 1459.53078
[17] Ivashkovich, S. and Shevchishin, V., ‘Structure of the moduli space in a neighborhood of a cusp-curve and meromorphic hulls’, Inventiones Mathematicae136(3) (1999), 571-602. doi: doi:10.1007/s002220050319. · Zbl 0930.32017
[18] Kawasaki, T., ‘The Riemann-Roch theorem for complex \(V\) -manifolds’, Osaka Journal of Mathematics16(1) (1979), 151-159. doi: doi:10.18910/8716. · Zbl 0405.32010
[19] Kawasaki, T., ‘The index of elliptic operators over \(V\) -manifolds’, Nagoya Math. J.84 (1981), 135-157. · Zbl 0437.58020
[20] Kazdan, J. L., ‘Unique continuation in geometry’, Communications on Pure and Applied Mathematics41(5) (1988), pp. 667-681. doi: doi:10.1002/cpa.3160410508. · Zbl 0632.35015
[21] Kempf, G., ‘Schubert Methods with an Application to Algebraic Curves’. Math. Centrum, Amsterdam, Afd. zuivere Wisk. ZW 6/71, 18 (1971). 1971. · Zbl 0223.14018
[22] Kleiman, S. L. and Laksov, D., ‘On the existence of special divisors’, American Journal of Mathematics94 (1972), pp. 431-436. · Zbl 0251.14005
[23] Kleiman, S. L. and Laksov, D., ‘Another proof of the existence of special divisors’, Acta Mathematica132 (1974), 163-176. · Zbl 0286.14005
[24] Koschorke, U., ‘Infinite dimensional \(K\) -theory and characteristic classes of Fredholm bundle maps’, Brandeis University, 1968. url: https://www.proquest.com/docview/302283188. · Zbl 0207.53602
[25] Kronheimer, P. B. and Mrowka, T. S., ‘Gauge theory for embedded surfaces. II’, Topology34(1) (1995), 37-97. · Zbl 0832.57011
[26] Lazarsfeld, R.. ‘Brill-Noether-Petri without degenerations’, Journal of Differential Geometry23(3) (1986), 299-307. doi: doi:10.4310/jdg/1214440116. · Zbl 0608.14026
[27] Lupercio, E. and Uribe, B., ‘Gerbes over orbifolds and twisted \(K\) -theory’, Communications in Mathematical Physics245(3) (2004), 449-489. · Zbl 1068.53034
[28] Mcduff, D. and Salamon, D., \( \text{J} \) -Holomorphic Curves and Symplectic Topology, second edn., American Mathematical Society Colloquium Publications, vol. 52 (American Mathematical Society, Providence, RI, 2012). · Zbl 1272.53002
[29] Moerdijk, I., ‘Orbifolds as groupoids: an introduction’, in Orbifolds in Mathematics and Physics. Proceedings of a Conference on Mathematical Aspects of Orbifold String Theory, Madison, WI, USA, May 4-8, 2001. (American Mathematical Society (AMS), Providence, RI, 2002), 205-222. · Zbl 1041.58009
[30] Nasatyr, B. and Steer, B., ‘Orbifold Riemann surfaces and the Yang-Mills-Higgs equations’, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze Ser. 4 22(4) (1995), 595-643. url: http://www.numdam.org/item/ASNSP_1995_4_22_4_595_0. · Zbl 0867.58009
[31] Oh, Y.-G. and Zhu, K., ‘Embedding property of \(J\) -holomorphic curves in Calabi-Yau manifolds for generic \(J\)’, Asian Journal of Mathematics13(3) (2009), 323-340. doi: doi:10.4310/AJM.2009.v13.n3.a4. · Zbl 1193.53180
[32] Ohtsuki, M., ‘A residue formula for Chern classes associated with logarithmic connections’, Tokyo Journal of Mathematics5 (1982), 13-21. · Zbl 0501.32005
[33] Palais, R. S., ‘When proper maps are closed’, Proceedings of the American Mathematical Society24 (1970), 835-836. doi: doi:10.2307/2037337. · Zbl 0189.53202
[34] Sard, A., ‘A theory of cotypes’, Bulletin of the American Mathematical Society75 (1969), 936-940. · Zbl 0181.26901
[35] Satake, I.. ‘On a generalization of the notion of manifold’, Proceedings of the National Academy of Sciences of the United States of America42 (1956), 359-363. · Zbl 0074.18103
[36] Shen, S. and Yu, J., ‘Flat vector bundles and analytic torsion on orbifolds’, Communications in Analysis and Geometry (2019). To appear. · Zbl 1512.58016
[37] Smale, S., ‘An infinite dimensional version of Sard’s theorem’, American Journal of Mathematics87 (1965), 861-866. doi: doi:10.2307/2373250. · Zbl 0143.35301
[38] Taubes, C. H., ‘Counting pseudo-holomorphic submanifolds in dimension \(4\)’, Journal of Differential Geometry44(4) (1996), 818-893. http://projecteuclid.org/euclid.jdg/1214459411. · Zbl 0883.57020
[39] Thurston, W., Geometry and Topology of Three-Manifolds (Princeton University, 2002). http://library.msri.org/books/gt3m/.
[40] Wendl, C., ‘Automatic transversality and orbifolds of punctured holomorphic curves in dimension four’, Commentarii Mathematici Helvetici85(2) (2010), 347-407. doi: doi:10.4171/CMH/199. · Zbl 1207.32021
[41] Wendl, C., Lectures on Symplectic Field Theory (2019). European Mathematical Society Lecture Notes, Preprint, 2016, https://arxiv.org/abs/1612.01009.
[42] Wendl, C., ‘Transversality and super-rigidity for multiply covered holomorphic curves’. To appear in Annals of Mathematics. · Zbl 07690462
[43] Wendl, C., ‘How I learned to stop worrying and love the Floer \({C}_{\epsilon }\) space’, 2021, https://symplecticfieldtheorist.wordpress.com/2021/05/14/how-i-learned-to-stop-worrying-and-love-the-floer-c-epsilon-space/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.