×

Uniformization of branched surfaces and Higgs bundles. (English) Zbl 1483.30078

Summary: Given a compact connected Riemann surface \(\Sigma\) of genus \(g_{\Sigma}\geq 2\), and an effective divisor \(D=\sum_i n_i x_i\) on \(\Sigma\) with \(\mathrm{degree}(D)<2( g_{\Sigma}-1)\), there is a unique cone metric on \(\Sigma\) of constant negative curvature \(-4\) such that the cone angle at each point \(x_i\) is \(2\pi n_i\) [R. C. McOwen, Proc. Am. Math. Soc. 103, No. 1, 222–224 (1988; Zbl 0657.30033); M. Troyanov, Trans. Am. Math. Soc. 324, No. 2, 793–821 (1991; Zbl 0724.53023)]. We describe the Higgs bundle on \(\Sigma\) corresponding to the uniformization associated to this conical metric. We also give a family of Higgs bundles on \(\Sigma\) parametrized by a nonempty open subset of \(H^0(\Sigma, K_{\Sigma}^{\otimes 2}\otimes\mathcal{O}_{\Sigma}(-2D))\) that correspond to conical metrics of the above type on moving Riemann surfaces. These are inspired by Hitchin’s results in [N. J. Hitchin, Proc. Lond. Math. Soc. (3) 55, 59–126 (1987; Zbl 0634.53045)] for the case \(D=0\).

MSC:

30F10 Compact Riemann surfaces and uniformization
14H60 Vector bundles on curves and their moduli
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
53C43 Differential geometric aspects of harmonic maps

References:

[1] Ahlfors, L. and Bers, L., Riemann’s mapping theorem for variable metrics,Ann. Math.72 (1960) 385-404. · Zbl 0104.29902
[2] Baptista, J. O., Vortices as degenerate metrics, Lett. Math. Phys.104 (2014) 731-747. · Zbl 1293.53031
[3] Baptista, J. O. and Biswas, I., Abelian vortices with singularities, Diff. Geom. Appl.31 (2013) 725-746. · Zbl 1314.53052
[4] Biswas, I., Gastesi, P. and Govindarajan, S., Parabolic Higgs bundles and Teichmüller spaces for punctured surfaces, Trans. Amer. Math. Soc.349 (1997) 1551-1560, · Zbl 0964.32011
[5] Bradlow, S. B., García-Prada, O. and Gothen, P. B., Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, Geom. Dedicata122 (2006) 185-213. · Zbl 1132.14029
[6] Corlette, K., Flat \(G\)-bundles with canonical metrics, J. Differential Geom.28 (1988) 361-382. · Zbl 0676.58007
[7] Donaldson, S. K., Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc.55 (1987) 127-131. · Zbl 0634.53046
[8] Goldman, W. M., Topological components of spaces of representations, Invent. Math.93 (1988) 557-607. · Zbl 0655.57019
[9] Gunning, R. C., On Uniformization of Complex Manifolds: The Role of Connections (Princeton University Press, 1978). · Zbl 0392.32016
[10] Hitchin, N. J., The self-duality equations on a Riemann surface, Proc. London Math. Soc.55 (1987) 59-126. · Zbl 0634.53045
[11] Hitchin, N. J., Harmonic maps from a \(2\)-torus to the \(3\)-sphere, J. Differential Geom.31 (1990) 627-710. · Zbl 0725.58010
[12] Kim, S. and Wilkin, G., Analytic convergence of harmonic metrics for parabolic Higgs bundles, J. Geom. Phys.127 (2018) 55-67. · Zbl 1392.32006
[13] Mandelbaum, R., Branched structures on Riemann surfaces, Trans. Amer. Math. Soc.163 (1972) 261-275. · Zbl 0227.30021
[14] Mandelbaum, R., Branched structures and affine and projective bundles on Riemann surfaces, Trans. Amer. Math. Soc.183 (1973) 37-58. · Zbl 0278.30024
[15] McOwen, R. C., Point singularities and conformal metrics on Riemann surfaces, Proc. Amer. Math. Soc.103 (1988) 222-224. · Zbl 0657.30033
[16] Mondello, G., Topology of representation spaces of surface groups in \(PS L_2(\mathbb{R})\) with assigned boundary monodromy and nonzero Euler number, Pure Appl. Math. Q.12 (2016) 399-462. · Zbl 1394.30030
[17] Nasatyr, B. and Steer, B., Orbifold Riemann surfaces and the Yang-Mills-Higgs equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.22 (1995) 595-643. · Zbl 0867.58009
[18] Saint-Gervais, H.-P., Uniformization of Riemann Surfaces: Revisiting a Hundred-Year-Old Theorem (European Mathematical Society, 2016). · Zbl 1332.30001
[19] Simpson, C. T., Harmonic bundles on noncompact curves, J. Amer. Math. Soc.3 (1990) 713-770. · Zbl 0713.58012
[20] Troyanov, M., Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc.324 (1991) 793-821. · Zbl 0724.53023
[21] Wolf, M., The Teichmüller theory of harmonic maps, J. Differential Geom.29 (1989) 449-479. · Zbl 0655.58009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.