×

Inozemtsev system as Seiberg-Witten integrable system. (English) Zbl 1466.81036

Summary: In this work we establish that the Inozemtsev system is the Seiberg-Witten integrable system encoding the Coulomb branch physics of 4d \(\mathcal{N} = 2\) \( \mathrm{USp} (2N)\) gauge theory with four fundamental and (for \( N \geq 2 \)) one antisymmetric tensor hypermultiplets. We describe the transformation from the spectral curves and canonical one-forms of the Inozemtsev system in the \(N = 1\) and \(N = 2\) cases to the Seiberg-Witten curves and differentials explicitly, along with the explicit matching of the modulus of the elliptic curve of spectral parameters to the gauge coupling of the field theory, and of the couplings of the Inozemtsev system to the field theory mass parameters. This result is a particular instance of a more general correspondence between crystallographic elliptic Calogero-Moser systems with Seiberg-Witten integrable systems, which will be explored in future work.

MSC:

81R12 Groups and algebras in quantum theory and relations with integrable systems
81T60 Supersymmetric field theories in quantum mechanics

References:

[1] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in \(\mathcal{N} = 2\) supersymmetric Yang-Mills theory, Nucl. Phys. B426 (1994) 19 [Erratum ibid.430 (1994) 485] [hep-th/9407087] [INSPIRE]. · Zbl 0996.81510
[2] Seiberg, N.; Witten, E., Monopoles, duality and chiral symmetry breaking in \(\mathcal{N} = 2\) supersymmetric QCD, Nucl. Phys. B, 431, 484 (1994) · Zbl 1020.81911 · doi:10.1016/0550-3213(94)90214-3
[3] Gorsky, A.; Krichever, I.; Marshakov, A.; Mironov, A.; Morozov, A., Integrability and Seiberg-Witten exact solution, Phys. Lett. B, 355, 466 (1995) · Zbl 0997.81567 · doi:10.1016/0370-2693(95)00723-X
[4] Donagi, R.; Witten, E., Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B, 460, 299 (1996) · Zbl 0996.37507 · doi:10.1016/0550-3213(95)00609-5
[5] R. Y. Donagi, Seiberg-Witten integrable systems, alg-geom/9705010 [INSPIRE]. · Zbl 0896.58057
[6] Martinec, EJ; Warner, NP, Integrable systems and supersymmetric gauge theory, Nucl. Phys. B, 459, 97 (1996) · Zbl 0996.37506 · doi:10.1016/0550-3213(95)00588-9
[7] Martinec, EJ, Integrable structures in supersymmetric gauge and string theory, Phys. Lett. B, 367, 91 (1996) · doi:10.1016/0370-2693(95)01456-X
[8] D’Hoker, E.; Phong, DH, Calogero-Moser systems in SU(N) Seiberg-Witten theory, Nucl. Phys. B, 513, 405 (1998) · Zbl 1052.81624 · doi:10.1016/S0550-3213(97)00763-3
[9] D’Hoker, E.; Phong, DH, Calogero-Moser Lax pairs with spectral parameter for general Lie algebras, Nucl. Phys. B, 530, 537 (1998) · Zbl 0953.37020 · doi:10.1016/S0550-3213(98)00568-9
[10] Gorsky, A.; Marshakov, A.; Mironov, A.; Morozov, A., N = 2 supersymmetric QCD and integrable spin chains: Rational case N (f) < 2N_c, Phys. Lett. B, 380, 75 (1996) · doi:10.1016/0370-2693(96)00480-7
[11] A. Gorsky, S. Gukov and A. Mironov, Multiscale N = 2 SUSY field theories, integrable systems and their stringy/brane origin. 1., Nucl. Phys. B517 (1998) 409 [hep-th/9707120] [INSPIRE]. · Zbl 0920.58068
[12] A. Gorsky and A. Mironov, Integrable many body systems and gauge theories, hep-th/0011197 [INSPIRE]. · Zbl 0979.81096
[13] Gaiotto, D., \( \mathcal{N} = 2\) dualities, JHEP, 08, 034 (2012) · Zbl 1397.81362 · doi:10.1007/JHEP08(2012)034
[14] Witten, E., Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B, 500, 3 (1997) · Zbl 0934.81066 · doi:10.1016/S0550-3213(97)00416-1
[15] A. Gorsky and N. Nekrasov, Elliptic Calogero-Moser system from two-dimensional current algebra, hep-th/9401021 [INSPIRE]. · Zbl 1052.81607
[16] P. Argyres, O. Chalykh and Y. Lü, in preparation.
[17] Caorsi, M.; Cecotti, S., Geometric classification of 4d \(\mathcal{N} = 2\) SCFTs, JHEP, 07, 138 (2018) · Zbl 1395.81205 · doi:10.1007/JHEP07(2018)138
[18] Tachikawa, Y.; Zafrir, G., Reflection groups and 3d \(\mathcal{N} \)≥ 6 SCFTs, JHEP, 12, 176 (2019) · Zbl 1431.81152 · doi:10.1007/JHEP12(2019)176
[19] V. L. Popov, Communications of the Mathematical Institute, Rijksuniversiteit Utrecht. Vol. 15: Discrete complex reflection groups, Rijksuniversiteit Utrecht, Utrecht Sweden (1982). · Zbl 0481.20030
[20] V. Goryunov and S. H. Man, The complex crystallographic groups and symmetries of J10, in Advanced Studies in Pure Mathematics. Vol. 43: Singularity theory and its applications, Mathematical Society of Japan, Tokyo Japan (2006), pg. 55. · Zbl 1130.32012
[21] Etingof, P.; Felder, G.; Ma, X.; Veselov, A., On elliptic Calogero-Moser systems for complex crystallographic reflection groups, J. Algebra, 329, 107 (2011) · Zbl 1243.14036 · doi:10.1016/j.jalgebra.2010.04.011
[22] Minahan, JA; Nemeschansky, D., An N = 2 superconformal fixed point with E_6global symmetry, Nucl. Phys. B, 482, 142 (1996) · Zbl 0925.81309 · doi:10.1016/S0550-3213(96)00552-4
[23] Minahan, JA; Nemeschansky, D., Superconformal fixed points with E_nglobal symmetry, Nucl. Phys. B, 489, 24 (1997) · Zbl 0925.81382 · doi:10.1016/S0550-3213(97)00039-4
[24] Aharony, O.; Tachikawa, Y., A Holographic computation of the central charges of d = 4, N = 2 SCFTs, JHEP, 01, 037 (2008) · doi:10.1088/1126-6708/2008/01/037
[25] Nanopoulos, D.; Xie, D., \( \mathcal{N} = 2\) SU Quiver with USP Ends or SU Ends with Antisymmetric Matter, JHEP, 08, 108 (2009) · doi:10.1088/1126-6708/2009/08/108
[26] Benini, F.; Benvenuti, S.; Tachikawa, Y., Webs of five-branes and \(\mathcal{N} = 2\) superconformal field theories, JHEP, 09, 052 (2009) · doi:10.1088/1126-6708/2009/09/052
[27] Gaiotto, D.; Razamat, SS, Exceptional Indices, JHEP, 05, 145 (2012) · Zbl 1348.81408 · doi:10.1007/JHEP05(2012)145
[28] Inozemtsev, VI, Lax representation with spectral parameter on a torus for integrable particle systems, Lett. Math. Phys., 17, 11 (1989) · Zbl 0679.70005 · doi:10.1007/BF00420008
[29] Argyres, PC; Maimon, R.; Pelland, S., The M-theory lift of two O6^−planes and four D6-branes, JHEP, 05, 008 (2002) · doi:10.1088/1126-6708/2002/05/008
[30] Takasaki, K., Elliptic Calogero-Moser systems and isomonodromic deformations, J. Math. Phys., 40, 5787 (1999) · Zbl 0952.37015 · doi:10.1063/1.533056
[31] Chalykh, O., Quantum Lax pairs via Dunkl and Cherednik Operators, Commun. Math. Phys., 369, 261 (2019) · Zbl 1436.81058 · doi:10.1007/s00220-019-03289-8
[32] Ochiai, H.; Oshima, T.; Sekiguchi, H., Commuting families of symmetric differential operators, Proc. Japan Acad. Ser. A, 70, 62 (1994) · Zbl 0817.22010 · doi:10.2183/pjab.70.62
[33] Zotov, A., Elliptic linear problem for Calogero-Inozemtsev model and Painleve VI equation, Lett. Math. Phys., 67, 153 (2004) · Zbl 1053.34083 · doi:10.1023/B:MATH.0000032753.97756.94
[34] V. M. Buchstaber, G. Felder and A. P. Veselov, Elliptic Dunkl operators, root systems, and functional equations, hep-th/9403178 [INSPIRE]. · Zbl 0842.35128
[35] Krichever, IM, Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles, Funct. Anal. Appl., 14, 282 (1980) · Zbl 0473.35071 · doi:10.1007/BF01078304
[36] Hitchin, NJ, Stable bundles and integrable systems, Duke Math. J., 54, 91 (1987) · Zbl 0627.14024 · doi:10.1215/S0012-7094-87-05408-1
[37] Nekrasov, N., Holomorphic bundles and many body systems, Commun. Math. Phys., 180, 587 (1996) · Zbl 0859.35104 · doi:10.1007/BF02099624
[38] B. Nasatyr and B. Steer, Orbifold Riemann surfaces and the Yang-Mills-Higgs equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.22 (1995) 595 [alg-geom/9504015]. · Zbl 0867.58009
[39] Hurtubise, JC; Markman, E., Calogero-Moser systems and Hitchin systems, Commun. Math. Phys., 223, 533 (2001) · Zbl 0999.37048 · doi:10.1007/s002200100546
[40] P. Boalch, Wild character varieties, meromorphic Hitchin systems and Dynkin diagrams, in Nigel Hitchin’s 70th Birthday Conference, 3, 2017 [arXiv:1703.10376] [INSPIRE]. · Zbl 1429.58024
[41] Etingof, P.; Gan, WL; Oblomkov, A., Generalized double affine Hecke algebras of higher rank, J. Reine Angew. Math., 600, 177 (2006) · Zbl 1130.20006
[42] Boalch, P., Simply-laced isomonodromy systems, Publ. Math. IHÉS, 116, 1 (2012) · Zbl 1270.34204 · doi:10.1007/s10240-012-0044-8
[43] A. M. Levin and M. A. Olshanetsky, Painlevé-Calogero correspondence, in Calogero-Moser-Sutherland models, Montréal Canada (1997), CRM Series in Mathematical Physics, Springer, New York U.S.A. (2000) pg. 313.
[44] Takasaki, K., Painlevé-Calogero correspondence revisited, J. Math. Phys., 42, 1443 (2001) · Zbl 1016.34089 · doi:10.1063/1.1348025
[45] Kawakami, H., Matrix Painlevé systems, J. Math. Phys., 56, 033503 (2015) · Zbl 1322.34099 · doi:10.1063/1.4914369
[46] Bertola, M.; Cafasso, M.; Roubtsov, V., Noncommutative Painlevé Equations and Systems of Calogero Type, Commun. Math. Phys., 363, 503 (2018) · Zbl 1402.34092 · doi:10.1007/s00220-018-3210-0
[47] Lee, K-M; Yi, P., A Family of \(\mathcal{N} = 2\) gauge theories with exact S duality, Nucl. Phys. B, 520, 157 (1998) · Zbl 0947.81113 · doi:10.1016/S0550-3213(98)00078-9
[48] Freed, DS, Special Kähler manifolds, Commun. Math. Phys., 203, 31 (1999) · Zbl 0940.53040 · doi:10.1007/s002200050604
[49] Gukov, S.; Kapustin, A., New \(\mathcal{N} = 2\) superconformal field theories from M / F-theory orbifolds, Nucl. Phys. B, 545, 283 (1999) · Zbl 0944.81032 · doi:10.1016/S0550-3213(99)00008-5
[50] Sen, A., F theory and orientifolds, Nucl. Phys. B, 475, 562 (1996) · Zbl 0925.81181 · doi:10.1016/0550-3213(96)00347-1
[51] Banks, T.; Douglas, MR; Seiberg, N., Probing F-theory with branes, Phys. Lett. B, 387, 278 (1996) · doi:10.1016/0370-2693(96)00808-8
[52] Aharony, O.; Sonnenschein, J.; Yankielowicz, S.; Theisen, S., Field theory questions for string theory answers, Nucl. Phys. B, 493, 177 (1997) · Zbl 0937.81054 · doi:10.1016/S0550-3213(97)00104-1
[53] Douglas, MR; Lowe, DA; Schwarz, JH, Probing F-theory with multiple branes, Phys. Lett. B, 394, 297 (1997) · doi:10.1016/S0370-2693(97)00011-7
[54] Gaiotto, D.; Moore, GW; Tachikawa, Y., On 6d \(\mathcal{N} \) = (2, 0) theory compactified on a Riemann surface with finite area, PTEP, 2013 (2013) · Zbl 07406579
[55] D. Gaiotto, G. W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems, and the WKB Approximation, arXiv:0907.3987 [INSPIRE]. · Zbl 1397.81364
[56] Komori, Y.; Hikami, K., Quantum integrability of the generalized elliptic Ruijsenaars models, J. Phys. A, 30, 4341 (1997) · Zbl 0923.58046 · doi:10.1088/0305-4470/30/12/021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.