×

Hyperbolicity from contact surgery. (English) Zbl 1529.37024

Summary: A Dehn surgery on the periodic fiber flow of the unit tangent bundle of a surface produces a uniformly hyperbolic Cantor set for the resulting contact flow.

MSC:

37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
57K33 Contact structures in 3 dimensions
53E50 Flows related to symplectic and contact structures
57R65 Surgery and handlebodies

References:

[1] Burton, Robert; Easton, Robert W., Ergodicity of linked twist maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), 819, 35-49 (1980), Springer, Berlin · Zbl 0451.58023 · doi:10.1007/BFb0086978
[2] Colin, Vincent; Dehornoy, Pierre; Rechtman, Ana, On the existence of supporting broken book decompositions for contact forms in dimension 3 (2020) · Zbl 1512.53098
[3] Devaney, Robert L., Subshifts of finite type in linked twist mappings, Proc. Amer. Math. Soc., 71, 2, 334-338 (1978) · Zbl 0392.58005 · doi:10.2307/2042860
[4] Devaney, Robert L., Linked twist mappings are almost Anosov, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), 819, 121-145 (1980), Springer, Berlin · Zbl 0448.58018 · doi:10.1007/BFb0086984
[5] Fisher, Todd; Hasselblatt, Boris, Hyperbolic flows (2019), European Mathematical Society (EMS), Zürich · Zbl 1430.37002 · doi:10.4171/200
[6] Foulon, Patrick; Hasselblatt, Boris, Contact Anosov flows on hyperbolic 3-manifolds, Geom. Topol., 17, 2, 1225-1252 (2013) · Zbl 1277.37057 · doi:10.2140/gt.2013.17.1225
[7] Foulon, Patrick; Hasselblatt, Boris; Vaugon, Anne, Orbit growth of contact structures after surgery, Ann. H. Lebesgue, 4, 1103-1141 (2021) · Zbl 1492.37036 · doi:10.5802/ahl.98
[8] Nicol, Matthew, A Bernoulli toral linked twist map without positive Lyapunov exponents, Proc. Amer. Math. Soc., 124, 4, 1253-1263 (1996) · Zbl 0849.58041 · doi:10.1090/S0002-9939-96-03357-6
[9] Nicol, Matthew, Stochastic stability of Bernoulli toral linked twist maps of finite and infinite entropy, Ergodic Theory Dynam. Systems, 16, 3, 493-518 (1996) · Zbl 0851.58029 · doi:10.1017/S0143385700008932
[10] Przytycki, Feliks, Ergodicity of toral linked twist mappings, Ann. Sci. École Norm. Sup. (4), 16, 3, 345-354 (1984) (1983) · Zbl 0531.58031 · doi:10.24033/asens.1451
[11] Springham, J.; Sturman, R., Polynomial decay of correlations in linked-twist maps, Ergodic Theory Dynam. Systems, 34, 5, 1724-1746 (2014) · Zbl 1321.37007 · doi:10.1017/etds.2013.8
[12] Springham, James, Ergodic properties of linked-twist maps (2008)
[13] Springham, James; Wiggins, Stephen, Bernoulli linked-twist maps in the plane, Dyn. Syst., 25, 4, 483-499 (2010) · Zbl 1205.37013 · doi:10.1080/14689361003639080
[14] Sturman, Rob; Ottino, Julio M.; Wiggins, Stephen, The mathematical foundations of mixing, 22, xx+281 p. pp. (2006), Cambridge University Press, Cambridge · Zbl 1111.37300 · doi:10.1017/CBO9780511618116
[15] Wojtkowski, Maciej, Nonlinear dynamics (Internat. Conf., New York, 1979), 357, Linked twist mappings have the \(K\)-property, 65-76 (1980), New York Acad. Sci., New York · Zbl 0475.58008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.