×

Surfaces in \({\mathbb {P}^{4}}\) fibered in cubics. (English) Zbl 1181.14054

Let \(S\) be a smooth complex projective rational surface in \(\mathbb P^4\) ruled by cubics. Ph. Ellia [J. Pure Appl. Algebra 152, No. 1–3, 83–88 (2000; Zbl 0971.14033)] showed that the pair \((d,g)\) consisting of the degree and the sectional genus of \(S\) is confined to 5 possibilities. In the paper under review the authors obtain a complete classification: \((d,g)\) can only be \((5,2)\) or \((6,3)\), \(S\) is \(\mathbb F_1\) blown up at \(7\) or \(9\) points respectively in general position, and the precise description of the linear system providing the embedding is given in both cases. The authors associate to \(S\) a curve \(\Gamma\) in a suitable compactification, \(X\), of the space of smooth rational cubic curves in \(\mathbb P^4\), inspired by a construction of G. Ellingsrud and S. A. Strømme [Math. Scand. 76, No. 1, 5–34 (1995; Zbl 0863.14033)]. Then they find suitable generators for \(A^1(X) \otimes \mathbb Q\) the degrees of \(\Gamma\) with respect to which have relevant geometric meaning for the surface \(S\). Combining this with the double point formula for surfaces in \(\mathbb P^4\) provides remarkable constraints on the blow-ups a birational morphism \(S \to \mathbb F_e\) factors through. This leads to the result.

MSC:

14M07 Low codimension problems in algebraic geometry
14J26 Rational and ruled surfaces
Full Text: DOI

References:

[1] Amasaki M.: Verification of the connectedness of space curve invariants for a special case. Comm. Algebra 32(10), 3739-3744 (2004) · Zbl 1078.14039 · doi:10.1081/AGB-200027696
[2] Aure, A.: On surfaces in projective 4-space. Thesis, Oslo (1987)
[3] Abo H., Decker W., Sasakura N.: An elliptic conic bundle in \[{\mathbb{P}^4}\] arising from a stable rank-3 vector bundle. Math. Z. 229(4), 725-741 (1998) · Zbl 0954.14028 · doi:10.1007/PL00004679
[4] Alzati A., Tortora A.: Connected monomial invariants. Mauscripta Math. 116, 125-133 (2005) · Zbl 1064.14054 · doi:10.1007/s00229-004-0522-5
[5] Braun, R., Ranestad, K.: Conic bundle in projective fourspace. Algebraic Geometry (Catania, 1993/Barcelona, 1994). Lecture Notes in Pure and Appl. Math., vol. 200, pp. 331-339. Dekker, New York (1998) · Zbl 0945.14007
[6] Seminaire Chevalley: Anneaux de Chow and applications. Paris (1958) · Zbl 0098.13101
[7] Decker W., Schreyer F.O.: Non-general type surfaces in \[{\mathbb{P}^4} \] : some remarks on bounds and constructions. J. Symbol. Comput. 29, 545-583 (2000) · Zbl 1012.14014 · doi:10.1006/jsco.1999.0323
[8] Ellia P.: A note on rational surfaces in \[{\mathbb{P}^4} \] . J. Pure Appl. Algebra 152, 83-88 (2000) · Zbl 0971.14033 · doi:10.1016/S0022-4049(99)00133-4
[9] Ellingsrud, G., Piene, R., Stromme, S.A.: On the variety of nets of quadrics defining twisted cubic curves. In: Space Curves, Proc. 1985. Lecture Notes in Math., vol. 1266, pp.84-96. Springer, Berlin (1987) · Zbl 0659.14027
[10] Ellia, P., Sacchiero, G.: Smooth surfaces of \[{\mathbb{P}^4}\] ruled in conics. Algebraic Geometry (Catania, 1993/Barcelona, 1994). Lecture Notes in Pure and Appl. Math., vol. 200, pp. 49-62. Dekker, New York (1998) · Zbl 0940.14025
[11] Ellingsrud G., Stromme S.A.: The number of twisted cubic curves on the general quintic threefold. Math. Scand. 76, 5-34 (1995) · Zbl 0863.14033
[12] Fogarty J., Mumford D.: Geometric Invariant Theory, 2nd enlarged edn. Ergebnisse der Math., vol. 34. Springer, Berlin (1982) · Zbl 0504.14008
[13] Fulton W.: Intersection Theory. Springer, Berlin (1984) · Zbl 0541.14005
[14] Hartshorne R.: Algebraic Geometry. Springer, Berlin (1977) · Zbl 0367.14001
[15] Holme, A., Roberts, J.: On the embeddings of Projective Varieties. Algebraic Geometry (Sundance, UT, 1986), pp. 118-146. Lecture Notes in Math., vol. 1311. Springer, Berlin (1988) · Zbl 0663.14009
[16] Kleiman, S., Speiser, R.: Enumerative geometry of nodal plane cubics. Algebraic Geometry (Sundance, UT, 1986), pp. 156-196. Lecture Notes in Math., vol. 1311. Springer, Berlin (1988) · Zbl 0601.14045
[17] Ionescu, P.: Embedded projective varieties of small invariants. Proceedings of the Week of Algebraic Geometry Bucharest 1982, pp. 142-186. Lecture Notes in Math., vol. 1056. Springer, Berlin (1984) · Zbl 0542.14024
[18] Lanteri A.: On the existence of scrolls in \[{\mathbb{P}^4} \] . Rend. Accad. Lincei 69, 223-227 (1980) · Zbl 0509.14042
[19] Lanteri A., Palleschi M.: Osservazioni sulla rigata geometrica ellittica di \[{\mathbb{P}^4} \] . Istit. Lombardo Accad. Sci. Lett. Rend. A 112(2), 223-233 (1978) · Zbl 0451.14013
[20] Miret, J.M., Xambò Descamps, S.: On the geometry of nodal plane cubics: the condition p. Enumerative algebraic geometry (Copenhagen, 1989), pp. 169-187, Contemp. Math., vol. 123. American Mathematical Society, Providence (1991) · Zbl 0766.14041
[21] Newstead P.E.: Introduction to Moduli Problems and Orbit Spaces. Tata Institute, Springer, Bombay (1982) · Zbl 0411.14003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.